PROGRAMA DE ACTIVIDAD CURRICULAR

I. Identificación de la actividad curricular

Nombre del Programa	Doctorado en Ciencias de Recursos Naturales	Duración (semanas)	20 semanas
Nombre actividad	Nanotecnología	Horas totales	Intra-aula teórica
curricular	Ambiental	y semanales	semanal: 0
			Intra-aula práctica
			semanal: 0
			Intra-aula T/P semanal:4
			Extra-aula semanal: 4
			Intra-aula total: 80
			Extra-aula total: 80
Tipo de	Especializada	SCT	6
Formación			
Carácter	Teórico-Práctico	Requisitos	
Año académico	2023	Semestre	Segundo Semestre
Docente(s)	Responsable: Olga	Plataformas	Campus Virtual UFRO,
	Rubilar	en Uso	Zoom, Meet.
	Participante: Gonzalo		
	Tortella		

II. Perfil del graduado/especialista

La Doctora o el Doctor en Ciencias de Recursos Naturales es una investigadora o un investigador, con una formación integral en ciencias de los recursos naturales en el contexto de la sustentabilidad ambiental, con sólidas competencias para (1) desarrollar ciencia, tecnología e innovación orientada a la conservación de los recursos naturales y (2) difundir el conocimiento a la comunidad científica y a la sociedad en general. Posee una formación multidisciplinaria en los procesos físico-químicos, biológicos y microbiológicos asociados a los recursos naturales, y su relación con la producción vegetal, su conservación, prevención y biorremediación de suelos, lo que le habilita para (1.1) generar investigación original en el campo de las ciencias de recursos naturales y productos derivados, (2.1) gestionar la publicación de artículos científicos en base al conocimiento disciplinario o resultados de investigación en revistas reconocidas internacionalmente y (2.2) difundir sus resultados a públicos especializados y no especializados, contribuyendo a la valorización de los recursos naturales, cuidado del medioambiente y seguridad alimentaria. (2.3) Generar estrategias de transferencia y protección intelectual para resguardar resultados innovadores de investigación.

Así también, demuestra capacidad de trabajo en equipos multidisciplinarios, con pensamiento crítico, y evidencia de ética y responsabilidad social en su quehacer profesional.

La Doctora o el Doctor en Ciencias de Recursos Naturales, debido a su formación académica, podrá generar y/o mantener líneas de investigación e integrar centros o núcleos de investigación en universidades, en el sector privado o público, a nivel nacional o internacional.

III. Descripción de la actividad curricular

Asignatura electiva de formación especializada que aborda los conceptos de nanociencia y nanotecnología, revisando los principios fundamentales de la nanotecnología, la formación de nanoestructuras, técnicas de caracterización, su aplicación en la industria agrícolas, farmacéutica, cosméticos y alimentaria, y su impacto en el medioambiente. La asignatura contribuye a la línea de investigación en nanobiotecnología y en desarrollar investigación original en su propuesta de investigación en las líneas declaradas por el programa.

IV. Programa orientado al desarrollo de las siguientes competencias

Genéricas	De especialidad o disciplinares		
4.1. Pensamiento crítico: Toma	1.1 Generar investigación original en el campo		
decisiones a partir del análisis crítico	de las ciencias de recursos naturales y		
de diversas fuentes de información y	productos derivados.		
situaciones problemáticas, para			
generar posibles alternativas de			
solución con argumentos propios y			
colectivos.			

V. Resultados de aprendizaje

Al finalizar con éxito esta asignatura el estudiante:

- RA 1.1.1. Formula una propuesta de investigación en el área de los recursos naturales, incorporando metodologías de vanguardia..
- RA 1.1.2. Aplica con rigurosidad los componentes del método científico a través de la resolución experimental de un problema de investigación en el campo de los recursos naturales.
- RA 4.1.2. Justifica resultados y procedimientos entregando evidencias que dan validez a su postura.

VI. Contenidos

UNIDADES TEMÁTICAS:

UNIDAD 1: Concepto de nanociencia y nanotecnología. Términos técnicos de la nanotecnología.

UNIDAD 2: Nanoestructuras, nanopartículas, nanotubos y nanoemulsiones.

UNIDAD 3: Fabricación de nanoestructuras y sus aplicaciones en la industria agrícolas, farmacéutica, cosméticos y alimentaria.

UNIDAD 4: Técnicas de caracterización de nanoestructuras (DLS, TEM, XRD y FTIR).

UNIDAD 5: Impacto de la nanotecnología en el ambiente: aspectos microbiológicos.

VII. Metodologías y estrategias de enseñanza-aprendizaje

Metodologías de Docencia directa (Horas Intra-Aula)

<u>Clase Expositiva</u>: Se efectuarán clases expositivas con el objetivo de conocer los métodos usados para la formación y caracterización de nanoestructuras, a cargo del profesor, incentivando la interacción con los estudiantes para promover el logro de los resultados de aprendizaje. Se incluye la visita o videoconferencias de profesores externos especialistas, para apoyar las Unidades del curso.

Trabajo autónomo de los estudiantes (Horas extra-aula

Los estudiantes realizarán una actividad teórica que consiste en la elaboración de trabajo con formato de artículo científico.

VIII. Evaluación

La ponderación de cada una de las evaluaciones son las siguientes:

- Minireview (RA 1.1.1): Ponderación de 30%
- Perfil de proyecto (RA 1.1.2): Ponderación de 30%
- Presentación final (RA 4.1.2):Ponderación de 40%

***Las evaluaciones del curso contempla la realización de un Minireview el cual consiste en una búsqueda bibliográfica de un tema que aborde los conceptos de nanociencia y nanotecnología, aplicaciones de la nanotecnología y sus efectos ecotoxicológicos. Además se contempla la realización de perfil de proyecto relacionado con la temática abordada en el Minireview el cual debe contener la problemática y posible solución. Finalmente, se contempla presentar un proyecto que contenga presentación del problema, objetivos y una descripción de todas las actividades de síntesis, caracterización y aplicación de nanoestructuras que permitan cumplir con la propuesta.

PLAGIO: es el uso de un trabajo, idea o creación de otra persona, sin citar la apropiada referencia y constituye una falta ética. En la actualidad, con las herramientas de informática es fácilmente detectable. En ninguna actividad curricular se acepta el plagio, ya sea en presentaciones orales, escritas o visuales, por lo que quien lo cometa será sancionado académicamente.

IX. Bibliografía y Recursos

Básica

- DURÁN N., GUTERRES S., ALVES O. 2014. Nanotoxicology. Editorial Springer.
 411p.
- MADIGAN M. 1999. Brock biología de los microorganismos. Editorial Prentice Hall. 986p
- RAI M., DURÁN N. 2011. Metal Nanoparticles in Microbiology. Editorial Springer. 303p.
- RAI M., POSTEN C. 2013. Green Biosynthesis of Nanoparticles. Editorial Cab International. 235p.
- RAMSDEN J. 2010. Nanotechnology an Introduction. Micro and Nano Technologies (Libros Electrónicos Elsevier, http://ezproxy.ufro.cl:2052/science/book/9780080964478).
- RUBILAR O., DIEZ M.C., TORTELLA G.R., BRICEÑO G., MARCATO P.D., DURÁN N. 2013. New Strategies and Challenges for Nanobiotechnology in Agriculture. Journal of Biobased Materials and Bioenergy. 8: 1-12

Complementaria

Recursos

Campus virtual, Bibliotecas y Recursos de Información, Universidad de La Frontera: www.bib.ufro.cl