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THESIS OUTLINE

Chile is a country with abundant aquatic resources that has allowed fishery and
aquaculture to develop in the last decades and Genypterus blacodes has become
important specie for the Chilean aquaculture industry. G. blacodes is one of the most
important species and commercialized in Chile, this species constitutes very important
resources in artisanal and industrial fishing. In recent decades, the harvest of this species
has been decreasing due to overexploitation, but also because it is strongly regulated by
catch quotas that are low compared to other species. Their catches have remained under
50 thousand ton per year in the period 2000-2014. It is a species with potential for
Chilean aquaculture due to meat quality and its high commercial value. The
characteristics project G. blacodes as candidate for the development of their farming
technology. Currently, the Chilean fishery has developed new technology and
knowledge for handling this species; this includes conditions for live storage,
management, catch and processing. The specimens of G. blacodes captured from the
natural environment has had an active response to live, fresh and inert food, in addition
to a rapid growth, and good health status. This potential to farm G. blacodes will open
interesting business prospects for Chile in the coming years. Despite the importance of
this species, very little is known about its reproductive biology. Reports on the breeding
of this fish in captivity are lacking and hatchery production of this species is yet to be
developed for large-scale farming. Considering the importance of protecting this fish, it

is essential to understand its reproductive biology.



Therefore, the following hypothesis were proposed: "The parameters of sperm functions
(motility, mitochondrial membrane potential, plasma membrane integrity and DNA
fragmentation) morphology and ultrastructure of pink cusk-eel (Genypterus blacodes)
are within ranges similar to those described for other teleosts”. "Sperm motility depends
on physicochemical characteristics of the activation media, such as: pH, osmolality, and

temperature”.

In Chapter I, general introduction, hypotheses, general, and specific objectives
are presented. The general objective of this Doctoral Thesis was to assess the spermatic
functions (motility, mitochondrial membrane potential, cytoplasm membrane integrity
and viability, DNA integrity and fertility) and the effects of pH, osmolality and

temperature on pink cusk-eel sperm motility (Genypterus blacodes).

Chapter Il corresponds to the manuscript entitled ‘Effect of pH, osmolality and
temperature on sperm motility of pink cusk-eel (Genypterus blacodes)’’. In this chapter,
we evaluate the effects of pH, temperature and osmolality at different values on the
sperm motility of G. blacodes intratesticular spermatozoa. In addition, we determined
the fertilization rate. Findings revealed that the sperm motility is initiated on contact
with a hyperosmotic swimming medium under normal conditions. The longest motility
duration was recorded at 4°C. The maximum percentage of motile cells was recorded at
8°C at osmolality 1010 mOsm/kg, whereas an optimum was observed at pH 8 and a
high fertility rate. In conclusion, the results of this chapter permit a baseline to be
established for further research and protocols for artificial reproduction of this species to
be developed and optimized. In addition, the information gathered in this research will

be useful for developing the biotechnology of G. blacodes.
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Chapter 111 corresponds to the manuscript entitled “’Study of spermatic function
pink cusk eel (Genypterus blacodes, Schneider 1801)”’. In this chapter, we determined
the percentage of mitochondrial membrane potential (JC-1 staining), cytoplasm
membrane integrity (SYBR-14/Pl) and DNA integrity [transferase dUTP (deoxyuridine
triphosphate) nick-end labelling (TUNEL) by flow cytometry, whereas the motility was
evaluated subjectively by optical microscope and Computer Assisted Sperm Analyzer
(CASA) and the fertility was evaluated. Sperm motility was initiated in contact with a
hyperosmotic swimming medium with a percentage subjective and CASA >80% and
>20%, respectively. Additionally, the motility showed a positive correlation with
mitochondrial integrity and citoplasmatic membrane integrity. Additionally, the velocity
straight line and velocity curved-line correlated very well with the mitochondrial
integrity and fertility, respectively.

Chapter 1V corresponds to the manuscript entitled ’Morphology and ultrastructure
of pink cusk-eel (Genypterus blacodes) spermatozoa by scanning and transmission
electron microscopy’’. In this chapter, morphological and ultrastructure of Genypterus
blacodes spermatozoa were studied using scanning electron microscopy (SEM) and
transmission electron microscopy (TEM). G. blacodes spermatozoon have a primitive
type and is uniflagellated, lacks an acrosome, and is differentiated into a head,
midpiece, and flagellum. The short mid-piece contains 4 or 5 mitochondria. The
axoneme composed the typical 9+2 microtubular doublet structure.

Finally, Chapter V corresponds to general discussion, conclusions, and future

directions.

vii



TABLE OF CONTENTS

Agradecimientos iv
Thesis outline vi
Table of contents iX
Table index Xi
Figure index Xii
CHAPTER I. General Introduction, Hypothesis and Objectives 1
1.1 General introduction 2
1.2 Hypothesis 10
1.3 General objective 11
1.4 Specific objectives 11
1.5. Reference 12

CHAPTER II. Effect of pH, osmolality and temperature on sperm motility of pink 20
cusk-eel (Genypterus blacodes, Forster, 1801)

Abstract 22
2. Introduction 23
2.1 Material and Methods 25
2.1.1. Broodstock 25
2.1.2. Collection of gametes 25
2.1.3. Sperm density 26
2.1.4. Activation solutions 26
2.1.5. Assessment of sperm motility 27
2.1.6 Statistical analysis 27
2.3 Results 28
2.2.1. Spermatological parameters 28
2.2.2. Sperm density 29
2.2.3. Effects of pH on the duration and level of sperm motility 29
2.2.4. Effects of temperature on the duration and level of sperm motility 29
2.2.5. Effects of osmolality on the duration and level of sperm motility 30
2.3 Discussion 31
2.3.1 Sperm density and motility 31
2.3.2 Effect of temperature, pH and osmolality on the duration of sperm 34
motility
Acknowledgments 34
References 35

viii



CHAPTER II1. Study of spermatic function pink cusk eel (Genypterus blacodes) 42

Abstract 44
3. Introduction 46
3.1 Material and Methods 48
3.1.1. Broodstock males 48
3.1.2. Collection of gametes 48
3.1.3. Sperm density 49
3.1.4. Sperm evaluation 49
3.1.3.1 Motility by Computer Assisted Sperm Analyzer (CASA) 49
3.1.3.2 Motility Subjective 50
3.1.3.3 DNA fragmentation 50
3.1.3.4 Cytoplasm membrane integrity 51
3.1.3.5 Mitochondrial membrane potential (AYM) 51
3.1.3.6 Fertility 52
3.1.5. Flow cytometry 52
3.1.6. Statistical analysis 53
3.2. Results 53
3.2.1 Spermatological parameters 53

3.2.2. Sperm density

3.2.3 Evaluation of membrane integrity, mitochondrial membrane potential, 53
DNA integrity, motility and fertility 53
3.2.4. Relationships between motility and plasma membrane integrity, 55
mitochondrial membrane integrity, DNA fragmentation and fertility

3.3. Discussion 57
Acknowledgments 61
References 61

CHAPTER 1V. Morphology and ultrastructure of pink cusk-eel (Genypterus 66
blacodes) spermatozoa by scanning and transmission electron microscopy

Abstract 68
4. Introduction 69
4.1 Materials and Methods 70
4.2 Results and Discussion 71
4.3 Conclusions 77
Acknowledgements 78
References 79
Chapter V. General discussion and conclusions 83
5. General discussion 84
5.1. Concluding remarks 90
5.2. Future directions 91
References 93
Annexes 97



TABLE INDEX

CHAPTER 1I. Effect of pH, osmolality and temperature on sperm
motility of pink cusk-eel (Genypterus blacodes, Forster, 1801)

Table 1. Morphometric and spermatological parameters of pink cusk-eel
(Genypterus blacodes) samples (n =9 males).

Table 2. Levels of sperm motility of the pink cusk-eel (Genypterus
blacodes) activated with solutions at different temperatures and
osmolalities: control (100% seawater), T1 (75% seawater), T> (50%
seawater) and Tz (distilled water) n = 15.

CHAPTER I11. Study of spermatic function pink cusk eel (Genypterus
blacodes, Schneider 1801)

Table 1. Mean = S.D rate of sperm functionality variables: citoplasmatic
membrane integrity; mitochondrial membrane potential; DNA
fragmentation, motility and fertility of intratesticular spermatozoa G.
blacodes) (P<0. 05, n=12).

CHAPTER 1V. Morphology and ultrastructure of pink cusk-eel
(Genypterus blacodes, Schneider 1801) spermatozoa by scanning and
transmission electron microscopy

Table 1. Ultrastructural and morphological variables of Genypterus
blacodes spermatozoa.

20

28

28

42

54

66

74



FIGURE INDEX

CHAPTER II. Effect of pH, osmolality and temperature on sperm motility of
pink cusk-eel (Genypterus blacodes, (Forster, 1801))

Figure 1. A) Duration of motility (s) and percentage of motility of pink cusk-eel
spermatozoa under different pH (6, 7, 8 and 9) conditions, osmolality = 1010
mOsm/kg and temperature =16°C; B) Duration of motility (s) and percentage of
motility of pink cusk-eel spermatozoa under different temperatures (4, 8 and 16°C),
pH 8 and osmolality = 1010 mOsm/kg; C) Duration of motility (s) (mean = SD) and
percentage of motility of pink cusk-eel (Genypterus blacodes) spermatozoa
activated in different salinity conditions, 100% sea water (1010 mOsm/kg); 75% sea
water (774 mOsm/kg); 50% sea water (488 mOsm/kg) and distilled water (0
mOsm/kg), pH 8 and temperature 16°C. The values are shown as mean + SD,
capital and small letters indicate significant differences in motility (%) and duration
of motility, respectively with p< 0.05 and n = 15 replicates.

CHAPTER I11. Study of spermatic function pink cusk eel (Genypterus blacodes,
Schneider 1801)

Figure 1. (a) Mean + S.D velocity: VCL, VSL and VAP; (b) Mean £ S.D rate of
motility variables (Motility, LIN and WOB) of intratesticular spermatozoa pink
cusk-eel (G. blacodes) that were activated in sea water (P<0.05, n=10).

Figure 2. Relationship between motility, mitochondrial membrane potential and
citoplasmatic membrane integrity of G. blacodes intratesticular spermatozoa that
were activated in seawater: a) Positive correlation between motility and
mitochondrial membrane potential (r= 0.94); b) citoplasmatic membrane integrity (r
=0.92) (n=10).

Figure 3. Relationship between VCL, VSL and mitochondrial membrane potential
of G. blacodes intratesticular spermatozoa that were activated in seawater. (a)
Positive correlation between VSL and mitochondrial membrane potential (r = 0.97);
(b) Positive correlation between VCL and mitochondrial membrane potential (r =
0.91) (n=10).

Figure 4. Relationship between fertility, motility, mitochondrial membrane
potential VSL and VCL of G. blacodes intratesticular spermatozoa: a) positive
correlation between fertility and motility (r = 0.89); b) correlation between fertility
and mitochondrial membrane potential (r = 0.87); c) positive correlation between
fertility VSL (r = 0.84) and d) VCL (r = 0.86) (n= 10).

20

30

42

54

55

56

57

Xi
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microscopy

Figure 1. Scanning electron microscopy (SEM) micrographs of smear Genypterus
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Figure 2. TEM micrographs of smear Genypterus blacodes. A) Nu, nucleus; M,
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CHAPTER I

General introduction, hypothesis and objectives



1. GENERAL INTRODUCTION

Aquaculture is an industry that generates revenue based on the application of different
technologies for the potential development of high demand aquatic species for human
consumption (Ovando-Solis, 2013). The sustainability of world fisheries has been an
important especially on the directions of current trends in fish abundance and the
prospects for stock, food security, and biodiversity conservation (Worm et al., 2009;
Youn et al., 2014; McClanahan et al., 2015). In 2014, aquaculture production increased
11% compared to 2012, and it currently provides half of all the fish destined for human
consumption, with the foreseeable future growth of the fisheries sector deriving mainly
from aquaculture (FAO, 2016). During the past years, the overexploitation of fisheries
resulted in an increase of aquaculture production to fulfil the market demands on marine
products of a global exponentially growing human population (Lahnsteiner et al., 2009;
Aksnes & Browman, 2016).

Chile is the largest fisheries producer nation in the world in terms of production
(FAO, 2014, 2010). It is among the top ten most important aquaculture producers in the
world with abundant aquatic resources that has allowed aquaculture to develop in the
last decades especially for Atlantic salmon. Genypterus blacodes is a species that
distribute both in the Pacific and Atlantic seawaters of South America (Diaz et al.,
2012). It is an opportunistic benthic predator and their populations can be found in
Uruguay, Argentina, New Zealand, southern Australia, Brazil and Chile (Francis et al.,

2002; Nyegaard et al., 2004).



According to the compiled logbooks, the pink cusk-eel fishery is developed in Chilean
waters between Talcahuano (36° 44'S) and south of Cabo de Hornos (57°00'S) from
Coquimbo to austral zone (41°28'-57°00'S) (Ward et al., 2001; Wiff et al., 2007). The
reproductive activity of the species occurs mainly during the summer in Patagonian
coastal waters, from 41°S to 45°S (Louge et al., 1992). It is one of the two species of the
genus Genypterus traditionally exploited in the Argentine Sea, and in Chile (Cohen et
al., 2015). Considering the commercial importance of G. blacodes for Chilean
aquaculture, it is essential to understand the reproductive biology of this species.
Commercial capture of G. blacodes represents a significant source of income for
Chilean fishery. However, its population has declined to such a degree that major
concerns have been raised for its long-term survival (Wiff et al., 2006; Chong et al.,
2014).

It is a species with the greatest farming potential in Chile, due the exceptional
quality of its flesh and high commercial value (Vega et al., 2012). Studies about the
genus G. blacodes in other parts of the world, have suggested the existence of multiple
stocks in comparatively smaller areas than the distribution presented by this species in
Chile (Wiff et al., 2011). In Chile G. blacodes is a specie sexually immature, sexual
maturation can be influenced by a number factors including age, size, geographic
distribution, season, nutritional status, and fishing pressure (Bromley, 2000; Smith et
al., 2005). There are numerous publications regarding the fisheries studies of G.
blacodes such as its taxonomy, stomach contents, parameters of age and growth (Chong
& Aguayo, 1990), macroscopic and microscopic structure of the ovary in samples from
its Atlantic range, description of spawning stages from Argentinean waters
(Machinandiarena et al., 1998), regional morphometric variations in New Zealand

(Colman, 1995), instantaneous rate of natural mortality (Ojeda et al., 1986) and



population structure (Canales-Aguirre et al., 2010). Annual catches of G. blacodes in
Chile ranged from 45-50 thousand tons (Chong et al., 2014). During the last decades,
fish farmers of the world have become attracted to G. blacodes farming, especially in
Chile, Australia, Argentina and New Zealand. For the time being, there is management
plan to repopulate the environment of this species. There are not international databases
recording the production and sales of aquacultured G. blacodes. Studies on the
reproductive status of G. blacodes in the coast of Chile are relatively sparse and
consider the austral zone as a single closed population. These include studies on
fecundity and maturity (Chong, 1993; Paredes & Bravo, 2005). Key aspects of the
reproduction of this species, and how these may differ between management zones and
across time, remain largely unknown (Baker et al., 2013). G. blacodes is a spawner with
low fertility and a high frequency of spawning events (Cordo et al., 2002).

It has been established that this species has a partial spawning type, with a pattern
of indeterminate oocyte development. Since G. blacodes has relatively low levels of
fecundity and matures at a larger size than, for example, the two Chilean hake species
such as Merluccius gayi and Merluccius australis, with fecundities of 500 000 oocytes
approximately, it may be more susceptible to overexploitation than the hake (Paredes &
Bravo, 2005). Reproduction of this fish takes place in the deepest of its habitat. During
the spawning season, G. blacodes moves to the deepest depths low layers, even as deep
as a thousand meters (Freijo et al., 2009). The eggs of Genypterus, ranges between ten
million, resemble tiny balloons of very transparent glass and fluctuate between the
surface and 500 meters deep, the tiny organisms are born in sheet form, called
leptocephali. While studies of the reproduction of this species are improving, questions
about many aspects of the life history and stages of reproduction of this fish remain

(George-Nascimento & Muiio, 1997).



The main export market of G. blacodes for Chile is Spain with 72% of frozen
concentrated shipments, equivalent to 563 t, and 100% of shipping fresh cooled,
followed by the United States, Brazil, Russia, Brazil and Portugal (SUBPESCA, 2013).
The export price level of this fish in Chile vary between US $ 3.5 per kilo for fresh
produce refrigerated and US $ 4.2 per kilo for frozen format, positioning it as a very
attractive business. Artisanal sector catches are processed mainly in fresh cooled format,
while the industrial sector is essentially intended for frozen (SUBPESCA, 2013). In
Chile, the marketing chain craft sector G. blacodes is quite simple, it is distributed
wholesale nationwide retailers that distribute in their regions or to processing plants that
are responsible for processing mainly in fresh chilled for export.

After capture, G. blacodes is either processed immediately or kept alive. Live
storage includes storage in water tanks near processing facilities and dry transport to the
destination market. Live storage enables the industry to control the processing time or
transport of live G. blacodes. The development of live-storage technology requires a
reliable, consistent supply of crabs. It is through live storage that G. blacodes can be
transported to overseas markets in good condition (SUBPESCA, 2013). Processing of
G. blacodes includes a series of operations, from slaughtering to the final product. To
increase the market share and position of Chilean G. blacodes, marketing and
promotion efforts are required. Nevertheless, it will be of the utmost importance that the
product is handled optimally from catch to the destination market in order to secure the
supply of consistent, quality products. In Chile, the G. blacodes is a sexually immature
species and the overexploitation reduces growth rates to reach a marketable size. The
successful intensive production of G. blacodes is dependent on high quality sexually

mature males and females.



Sexual maturation and reproductive behavior are controlled by an interaction of
endogenous and exogenous forces (Baggerman, 1980; Baroiller & Jalabert, 1989). To
carry out the culture of G. blacodes, previously it is required to control the reproductive
cycle and broodstock management systems. An alternative is the rearing of broodstock
in recirculating aquaculture systems with the maturation cycles (Migaud, 2006;
Philipsen, 2008). Many studies have found broodstock nutrition to have an effect on the
quality of reproduction of farmed fish (Henrotte et al., 2010). In G. blacodes, as in most
commercially important farmed finfish, hormone stimulation is frequently applied to
synchronize ovulation of females and/or stimulate release of semen in males.

One of the strategies to protect the reproductive potential of this species is to
evaluate the quality of the gametes, broodstock management and the larval culture. The
main challenge to repopulate the environment of G. blacodes will be to optimize and
improve the captive production to reduce the mortality rate and maximize the survival
of the larvae, also, improve the in vivo storage conditions. To produce G. blacodes
larvae with good yields, it is important to know the nutritional requirements of the
species, particularly in the first larval stages. In addition, it is known that the nutrition of
the broods directly influences the quality of the larvae. Studies of methods of artificial
reproduction, with emphasis on broodstock reproductive physiology, to define those
optimal for achievement of stable mass production of G. blacodes larvae and fry are still

needed.



The study of sperm quality is essential to understand the overall dynamic of
fertilization process in fish. In fish, the spermatozoon is immobile while it remains in
the seminal fluid and its flagellar activity is only triggered when it comes into contact
with water (Alavi & Cosson, 2005, 2006). Sperm quality has been a focus of research
since it can be used as a biomarker of the male fish status (Chauvaud et al., 1995;
Cabrita et al., 2009). The knowledge of the motility patterns of spermatozoa in this
species is a key tool to determine the quality of the semen during the procedures of
artificial fertilization (Alavi & Cosson, 2005; Hu et al., 2009; Valdebenito et al., 2009).
According to Alavi & Cosson (2006), the parameters such as: temperature, pH and
osmolality affect the capacity for and duration of mobility in fish spermatozoa, but pH
has been reported as having little effect on the motility activation of fish spermatozoa.
The motility duration, fertilizing ability and velocity of spermatozoa depend on
temperature of the activation medium (Billard et al., 1995b).

Efforts have been made to understand the life cycle and reproductive biology of
this species. Sperm quality has been a focus of research, since it can be used as a
biomarker of the male status (Chauvaud et al., 1995; Cabrita et al., 2009). Study of
sperm function is essential to understand the overall dynamics of fertilization process in
fish. A quality assessment must be reliable and fast to be useful in commercial
aquaculture (Cabrita et al., 2009). The parameters of spermatic function, such as
motility, mitochondrial membrane potential (JC-1/rhodamine), cytoplasm membrane
integrity (SYBR-14/P1), and DNA integrity [transferase dUTP (deox-yuridine
triphosphate) nickend labelling (TUNEL)] single-cell electrophoresis (COMET)], have
been determined in several species using flow cytometry or electrophoresis (Lahnsteiner
et al., 1996, 1998; Fauvel et al., 1998; Geffen & Evans, 2000; Chowdhury & Joy, 2001;

Rurangwa et al., 2004; Figueroa et al., 2016).



The evaluation of sperm motility and other kinetic parameters, like curvilinear, straight
line and average path velocities, is an essential tool in the examination of sperm quality
in many fish species, including the G. blacodes (Marco-Jiménez et al., 2006; Asturiano
et al., 2007; Gallego et al., 2012). However, a few studies have used flow cytometry to
evaluate the sperm function in intratesticular spermatozoa of G. blacodes. Various
studies have demonstrated that the majority of the characteristics of sperm function
analyzed contribute to the general quality of the spermatozoa (Alavi et al., 2008; Bobe
& Labbé 2010).

Motility, one of the most frequently used parameters to assess semen quality,
generally presents a positive correlation with fertilizing capacity (Figueroa et al., 2016).
Traditionally, motility was assessed subjectively by determining the percentage of
motile spermatozoa in a scale such as the one of Sanchez-Rodriguez & Billard (1977)
and Cosson et al. (2008b) with a subjective classification, which assigns a level of zero
when no spermatozoa are moving and five when all of them are moving vigorously,
additionally by Computer Assisted Sperm Analyzer (CASA). In the teleost species
studied to date, the spermatozoa structure has revealed a high diversity, predominately
between systematic families. This diversity is reflected in the head shape, in the
number, shape and location of mitochondria, and in the number, length and structure of
the flagellum (Guo et al., 2016). Teleost spermatozoa exhibit a diverse range of
structural features that makes it difficult to depict a common sperm type (Mattei, 1991).
The structure of fish spermatozoa varies between families: from aflagellate to
biflagellate, while shape, size, and structure can vary significantly according to whether

a species adopts internal or external fertilization (Jones & Butler, 1988).



Spermiogenesis in teleosts shows a wide variety of patterns which is broadly
categorized as two types (I and Il) of spermiogenesis (Mattei, 1970). With Type I,
rotation of the nucleus occurs and the diplosome enters the nuclear fossa and the
flagellum is symmetrically located, while with Type II, there is no nuclear rotation, the
diplosome remains outside the fossa and the flagellum is asymmetrically located. Mattei
(1970) have reported that the teleost sperm exhibit a broad range of varying structural
features that makes it difficult to depict a common sperm type. The characterization and
the study of spermatic function of G. blacodes would allow establish a base line of
sperm quality-markers and also improve the management in vitro of the gamete species.
The aim of this work was to assess the spermatic functions (motility, mitochondrial
membrane potential, cytoplasm membrane integrity and viability, and DNA integrity)
and the effects of pH, osmolality and temperature on pink cusk-eel sperm motility
(Genypterus blacodes, Schneider 1801). This thesis was realized with intratesticular
spermatozoa because for this species it is difficult to find wild fully-sexually mature
male individuals; and sexual maturation in captivity has not been yet reported. The use
of intratesticular spermatozoa for in vitro fertilization is a key tool for breeding this

species in captivity and hence would allow its introduction in aquaculture industry.



1.1. HYPOTHESES

Currently, there are not publications regarding study on sperm quality-markers in semen
of Genypterus blacodes. The evaluation of the effect pH, osmolality and temperature on
sperm motility, spermatic function, morphology and ultrastructure are essential to
understand the reproductive biology of this species with the potential to contribute to

the protection of this endangered species.

Therefore, the following hypothesis is proposed:

e The parameters of sperm functions (motility, mitochondrial membrane potential,
plasma membrane integrity and DNA fragmentation), morphology and
ultrastructure of pink cusk-eel spermatozoa (Genypterus blacodes, Schneider

1801) are within ranges similar to those described for other teleosts.

e Pink cusk-eel sperm motility (Genypterus blacodes, Schneider 1801) depends on
physicochemical characteristics of the activation media, such as pH, osmolality,

and temperature.
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1.2. GENERAL OBJECTIVE

To assess the spermatic functions (motility, mitochondrial membrane potential,
cytoplasm membrane integrity and viability, DNA integrity and fertility) and the effects
of pH, osmolality and temperature on pink cusk-eel sperm motility (Genypterus

blacodes, Schneider 1801).

1.3. SPECIFIC OBJECTIVES
1. To determine the effects of pH, osmolality and temperature on pink cusk-eel sperm

motility (Genypterus blacodes, Schneider 1801).

2. To assess the spermatic functions (motility, mitochondrial membrane potential,
Cytoplasm membrane integrity and viability, DNA integrity and fertility) of pink cusk-

eel sperm (Genypterus blacodes, Schneider 1801).

3. To determine the morphology and ultrastructure of spermatozoa pink cusk-eel

(Genypterus blacodes, Schneider 1801).
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Effect of pH, osmolality and temperature on sperm motility of
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Abstract

In this research we evaluated simple aspects of the sperm biology of Genypterus
blacodes, in particular assessing the effects of pH (6, 7, 8 and 9), temperature (4, 8 and
16° C) and osmolalities 100% sea water (1010 mOsm/kg, Control), 75% sea water (774
mOsm/kg, T1), 50% sea water (488 mOsm/kg, T>) and distilled water (0 mOsm/kg, T3))
on the motility of Genypterus blacodes intratesticular spermatozoa. In addition, we
determined the fertilization rate. Our results show that G. blacodes spermatozoa have a
sperm density of 5.35 + 0.16 x 10° spermatozoa/mL. Sperm motility is initiated on
contact with a hyperosmotic swimming medium under normal conditions (1010
mOsm/kg, pH 8 and 8°C). The longest motility duration (432.48 + 8.89 s) was recorded
at 4°C. The maximum percentage of motile cells was recorded at 8°C (65.66 * 4.95) at
osmolality 1010 mOsm/kg, whereas an optimum was observed at pH 8. This is the first
report on sperm motility of G. blacodes spermatozoa. In conclusion, the results of this
study permit a baseline to be established for further research and protocols for artificial
reproduction of this species to be developed and optimized. In addition, the information
gathered in this research will be useful for developing the biotechnology of Genypterus

blacodes.

Keywords: Genypterus blacodes; sperm motility; osmolality; pH; temperature
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2. Introduction

In recent years, the overexploitation of fisheries has resulted in increased aquaculture
production. The optimization of the reproductive performance of broodstock has been
essential to obtaining high quality fry, which is imperative if the aquaculture industry is
to produce high quality fish (Lahnsteiner et al., 2009). Within the order Ophidiiformes,
genus Genypterus (Genypterus Philippi, 1857) contains the most economically
important species. Three of these are found in Chilean waters: red cusk-eel (Genypterus
chilensis, (Guichenot, 1848)), black cusk-eel (Genypterus maculatus, (Tschudi, 1846))
and pink cusk-eel (Genypterus blacodes, (Forster, 1801)), with the last being the most
economically important (Canales-Aguirre et al., 2010). G. blacodes is a benthic-
demersal species found in the oceans around southern Australia, Chilean Patagonia,
Brazil, Argentina and New Zealand in depths from 22 to 1000 m (Young et al., 1984;
Francis et al., 2002; Nyegaard et al., 2004). Adults exhibit a demersal behavior and they
are usually found at depths between 45 and 350 m (Cousseau & Perrota, 2000;
Nyegaard et al., 2004). The pink cusk-eel fishery is developed in Chilean waters
between Coquimbo (41° and 28'S) and south of Cape Horn (57° and 00'S) (Ward et al.,
2001; Wiff et al., 2007). The global market for G. blacodes is around 45 thousand tons
per year. Spain is the main destination of G. blacodes exports, accounting for 72% of
frozen shipments, equivalent to 563 t, and 100% of shipping fresh chilled in 2013. Spain

is followed by the United States, Brazil, Russia and Portugal (Chong et al., 2014).
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Biological studies of this fish are scarce and they only mention its taxonomy, stomach
contents (Bahamonde & Zavala, 1981; Renzi, 1986;), age and growth parameters
(Chong & Aguayo, 1990; Wiff et al., 2007), macroscopic and microscopic structure of
the ovary in samples from its Atlantic range, description of spawning stages from
Argentinean waters (Machinandiarena et al., 1998), regional morphometric variations
in New Zealand (Colman, 1995), and instantaneous rate of natural mortality (Ojeda et
al., 1986; Wiff et al., 2011). There is limited information about the morphological and
functional aspects of the reproductive biology of G. blacodes (Chong, 1993; Paredes &
Bravo, 2005; Freijo et al., 2009; Diaz et al., 2012). The reproductive activity of this
species occurs in Patagonian coastal waters south of 42° S (Province of Chubut,
Argentina), and the spawning area goes from 41° S to 45° S, mainly during summer
(Cousseau & Perrotta, 2000). In Chile, the fecundity of G. blacodes in captivity is
estimated to be between 66,167 and 706,658 oocytes per female (Paredes & Bravo,

2005).

In the fish, the spermatozoon is immotile in the seminal fluid and its flagellar
activity is only triggered when it comes into contact with water (Alavi & Cosson, 2005,
2006). Sperm quality has been a focus of research given that it can be used as a
biomarker of the status of the male fish (Chauvaud et al., 1995; Cabrita et al., 2009).
Knowledge of sperm motility is a key tool to determine semen quality during artificial
fertilization procedures (Alavi & Cosson, 2005; Hu et al., 2009; Valdebenito et al.,
2009). According to Valdebenito et al. (2016), the parameters such as temperature, pH
and osmolality affect the capacity and duration of motility in fish spermatozoa. The
objective of this study was to determine the effects of osmolality, temperature and pH

on sperm motility of pink cusk-eel spermatozoa; and fertilization tests were conducted.
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In this study, intratesticular spermatozoa were used because for this species it is difficult
to find wild fully-sexually mature male individuals; and sexual maturation in captivity
has not been yet reported. The use of intratesticular spermatozoa for in vitro fertilization
is a key tool for breeding this species in captivity and hence would allow its

introduction in aquaculture industry.

2.1 Materials and Methods
2.1.1 Broodstock males

This study was conducted at the Engineering Biotechnology and Applied Biochemistry
Laboratory (LIBBA) and at the Center for Biotechnology in Reproduction (CEBIOR),
Universidad de la Frontera, Chile, as well as at the Aquaculture Biotechnology
Laboratory, Catholic University of Temuco, Chile. The specimens of G. blacodes were
caught between April and May 2017 in Puerto Montt, Region de Los Lagos, Chile with

average weight of 1.96 + 1.06 kg and a total length of 62.5 + 4.68 cm, respectively.
2.1.2 Collection of gametes

This study was carried out with intratesticular spermatozoa, which were collected
according to the procedure described by Cabrita et al. (2005). During transport, the
specimens were kept alive. The specimens of G. blacodes were anesthetized by
immersion with AQUI-S® (BAYER S.A. Animal Health-Chile) for a few minutes and
then decapitated. Their testicles were surgically extracted and carefully cleaned with
distilled water, dried and blood remnants were removed. The testis were transferred
individually into an Eppendorf tube on ice and were transported using oxygenated
containers with a constant temperature of 4°C. The testes were sectioned directly in the
Eppendorf tube (on ice) using a scalpel and collecting the sperm by dripping directly

into a graduated, sterile, dry, disposable plastic container maintained at 4 °C.
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In addition, the intratesticular spermatozoa were diluted in StorFish® (Imv,
Technologies, France) medium (dilution 1:1) and centrifuged twice at 1800 rpm for 5
minutes. Immediately after collection, sperm motility and concentration were

determined using a phase contrast microscope (Carl Zeiss, Jena, Germany).

2.1.3. Sperm density

Sperm density (number of spermatozoa/mL) was determined in six males using a
Neubauer hemocytometer according to the methodology described by Merino et al.
(2011) and Figueroa et al. (2015) for blood cells and spermatozoa at a dilution of 1 puL
of sperm in 1200 uL of StorFish® medium (Imv, Technologies, France) using a phase

contrast microscope (Carl Zeiss, Jena, Germany).

2.1.4. Activation solutions

For sperm motility activation, three solutions with different proportions of seawater
(350/L, pH 8) and distilled water were used: control, seawater 100% (1010 mOsm/kg);
T1, seawater 75% (774 mOsm/kg); T2, seawater 50% (488 mOsm/kg); and Ts, distilled
water (0 mOsm/kg), as suggested by Cosson et al. (2008b). These activation solutions
were assessed at three different temperatures (4°, 8° and 16 °C). The osmolalities used
in each activation solution were determined by a Fiske® Micro-Osmometer, 2010 model
(Germany). The pH of the control (seawater) was adjusted to three pH units above and
below the normal value (8) for seawater (6, 7 and 9) by adding HCI [1%] and NaOH
[1%)] respectively, using a pH-meter model pH 21. The effect on motility was assessed

at ambient temperature of 4, 8 and 16 °C.
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2.1.5. Assessment of sperm motility

Sperm motility was assessed in a cold-room, where temperatures of 4, 8 and 16 °C were
used for the experiment. All treatments were assessed by the same person using a Nikon
Eclipse E400 microscope (Japan) at 40x magnification. Approximately 4 h after the
semen were obtained, the flagellar activity periods were recorded using a chronometer
from the initiation of movement (progressive motility) until the start of local circular
movement (vibratory or stationary movement) (Groison et al., 2010). To assess the
percentage of motile cells, values from 0 to 100% were used as suggested by Cosson et
al. (2008b), on a scale from 1 to 5: 1 = 0-5%; 2 = 5-25%; 3 = 25-50%; 4 = 50-75%; 5 =
75-100%. The percentage and duration of motility were assessed in 15 aliquots of 1 pL
of semen activated in 10 pL of each of the activating solutions (Control, Ty, T2, and Ts)
at temperatures of 4, 8 and 16 °C as per Cosson et al., 2010 and Valdebenito et al.
(2016) using a Nikon Eclipse E400 (Tokyo, Japan) microscope at 10x magnification

and with 15 repetitions per treatment for osmolality and temperature.
2.1.6. Statistical analysis

The motility results were analyzed with the statistical software GraphPad Prisma®
version 5.0 (GraphPad Software, San Diego CA). A one-way ANOVA was used for
nonparametric samples to analyze the percentage and duration of motility. Additionally,
the analysis of differences between the average values of the variables of treatment
groups were compared by applying the Tukey test. The level of significance was set at p
< 0. 05, n = 15 replicate. The results of the level of motility are presented as a sample

mode.
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2.2. Results

2.2.1. Spermatological parameters

Table 1 shows the morphometric and spermatological parameters of pink cusk-eel

(Genypterus blacodes) samples, while Table 2 shows the levels sperm motility.

Table 1. Morphometric and spermatological parameters of pink cusk-eel samples (n =9

males).

Parameters Minimum Maximum  Mean SD

Weight (kg) 0.98 4.08 196  +1.06

Length (cm) 56 70 62.5 + 4.68
Testicle volume (mL) 1.2 2.5 1.47 +0.56

Table 2. Levels of sperm motility of the pink cusk-eel (Genypterus blacodes) activated
with solutions at different temperatures and osmolalities: control (100% seawater), T1
(75% seawater), T2 (50% seawater) and T3 (distilled water) n =15.

Activator (mOSm/kg) Temperature

4°C  8°C 16°C

Control (1010) Level

3 4 3

Temperature (16°C)

Treatment
Level
T (774) 3
T2(488) 2
T3 (0) 0
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2.2.2. Sperm density

The sperm density in G. blacodes intratesticular spermatozoa was of 5.35 + 0.16 x 10°

spermatozoa/mL
2.2.3. Fertility and effects of pH on the duration and level of sperm motility

The rate of sperm motility of G. blacodes intratesticular spermatozoa and fertilization
were expressed as mean + SD. Statistically significant differences (p< 0.05) were
observed in both duration of motility (s) and percentage of motility between pH 6, 7, 8
and 9. The highest level of motility was recorded at pH 8 (204. 14 + 10.00 s and 52.66 *
2.58 % of motility) compared to other treatments: pH 6 (168.4 = 11.18 s and 38 + 2.35
% of motility), pH 7 (186.64 + 4.31 s and 43 + 2.53 % of motility) and pH 9 (167.41 +
8.89 s and 37.5 £ 2.59 % of motility), while there was no significant difference between

pH 6 and 9 (Fig 1A). The determining rate for fertilization was 73.9 + 17%.
2.2.4. Effects of temperature on the duration and level of sperm motility

The flagellar activity was recorded at 4°C (Control: 432.48 + 8.89 s and 40 + 2.67% of
motility) comparing to 8°C (Control: 354.12 + 29.92 s and 65.66 + 4.95% of motility)
and 16°C (Control: 167.52 + 18.08 s and 47 £+ 2.53% of motility), while there was
significant difference in flagellar activity at 16 °C (control: 167.52 + 18.08 s; T1: 160.06
+ 2257 s; To: 70.14 + 11.16 s) and Ta: distilled water, the motility of which was not

observed (Fig 1B).
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2.2.5. Effects of osmolality on the duration and level of sperm motility

In terms of osmolality, significant differences were found for the control (354.12. 14 +
29.92 s) compared to T1 (160.06 + 22.57 s) and T (70.14 + 11.16 s) at 16 °C (Fig 1C).
G. blacodes intratesticular spermatozoa were only activated on contact with seawater

(1010 mOsm/Kkg), including seawater at lower levels of osmolality (772 mOsm/kg) and

(448 mOsm/kg). The G. blacodes spermatozoa were immotile in the testicle and only

began intense flagellar movement on contact with a hyperosmotic activation medium

including seawater at lower levels of osmolality.
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Figure 1. A) Duration of motility (s) and percentage of motility of pink cusk-eel

spermatozoa under different pH (6, 7, 8 and 9) conditions, osmolality = 1010 mOsm/kg

and temperature =16°C; B) Duration of motility (s) and percentage of motility of pink

cusk-eel spermatozoa under different temperatures (4, 8 and 16°C), pH 8 and osmolality
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= 1010 mOsm/kg; C) Duration of motility (s) (mean £ SD) and percentage of motility of
pink cusk-eel spermatozoa activated in different salinity conditions, 100% sea water
(1010 mOsm/kg); 75% sea water (774 mOsm/kg); 50% sea water (488 mOsm/kg) and
distilled water (0 mOsm/kg), pH 8 and temperature 16°C. The values are shown as mean
+ SD, capital and small letters indicate significant differences in motility (%) and

duration of motility, respectively with p< 0.05 and n = 15 replicates.

2.3. Discussion

2.3.1. Sperm density and motility

Cosson et al. (2008a, b) have reported in marine teleosts with external fertilization the
osmolality is the main factor controlling sperm motility. However, the sperm motility
rapidly decrease after activation therefore progressive movement needed by the sperm
to effectively reach the egg surface is limited. According to sperm duration of motility,
the spermatozoa of G. blacodes can move for up to 354.12 s as shown in this study;
sperm cells commence any flagellar activity only when they come into contact with a
hyperosmotic medium. Also, the motility observed in G. blacodes are similar to what
has been described for other marine fish species (Cosson, 2004; Cosson et al., 2008a;
Groison et al., 2008; Valdebenito et al., 2009; Groison et al., 2010; Effer et al., 2013).
Additionally, duration of motility of other marine species of commercial importance can
be mentioned, including halibut (110-120 s), turbot (600 s), sea bass (50-60 s), cod (7-
800 s) and tuna (140 s) (Cosson et al., 2008a, b). Although the motilities presented for
each of the above species were not determined under the same experimental conditions,
these data allow us to indicate differences and similarities between the main marine

species of commercial interest.
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In all these species, the spermatozoa are immotile in seminal fluid (Cierezko, 2008;
Cosson et al., 2008b,c; Cosson, 2004) and only commence flagellar activity when they
come into contact with a hyperosmotic medium (Cosson, 2004; Cosson et al., 20083,
2008b, 2008c; Morisawa, 2008; Cosson et al., 2010). However, the total motility time
will depend on fluctuations in the parameters of the microenvironment (pH, temperature
and osmolality) in which the reproduction of these species occurs (Cosson et al., 2008b;

Morisawa, 2008; Groison et al., 2010).

2.3.2. Effect of temperature, pH and osmolality on the duration of sperm motility

In marine teleosts, sperm motility is activated by contact with seawater mainly through
a positive increase in osmolality, and several factors are known to affect this process,
including temperature (Alavi & Cosson 2005, 2006). The effect of temperature on
sperm motility has scarcely been studied in marine and freshwater teleostei (Morisawa,
1994; Valdebenito et al., 2009, 2016). Nevertheless, it has been reported that with a
decrease in temperature, flagellar beating frequency is lower (Billard & Cosson, 1988)
and the duration of motility is longer (Cosson et al., 2008a, b). In this research, our data
showed that the activation medium indicated an optimum at 8°C 354.12 s (5.9 min)
compared to 4°C 432.48 s (7.20 min) and 16 °C 167.52 s (2.79 min), when G. blacodes
spermatozoa were activated with sea water. The spawning temperature for this species
is 10-14°C. The duration of sperm motility in fish depends on the temperature of the
activation medium (Billard & Cosson 1988). According to Alavi & Cosson (2005,
2006), low temperatures reduce the intensity of flagellar movement, significantly
prolonging motility, whereas high temperatures increase the intensity of flagellar

movement, reducing the motility time.
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However, there have been thorough studies focusing on the specific ions that trigger
sperm motility, such as K*, Ca?" and Mg?* present in seawater and their influence on
sperm motility activation (Cosson, 2004). G. blacodes spermatozoa were only activated
on contact with seawater (1010 mOsm/kg), including seawater at lower levels of
osmolality (772 mOsm/kg) and (448 mOsm/kg). However, motility was not found when
the semen was transferred to distilled water (mOsm/kg). Valdebenito and Figueroa
(unpublished data) point out that the maximum mean duration recorded for G. chilensis
was 1346 s in a saline solution (928 mOSm/kg) and for the black conger eel it was 1470
s in saline solution (754 mOsm/kg). Nevertheless, motility in marine fish may occur in a
wide range of osmolalities, for example in Atlantic halibut (Hippoglossus hippoglossus)
it occurs between 900 and 1100 mOsm/kg (Billard et al., 1995), in Dicentrarchus
labrax over 300 mOsm/kg (Chauvaud et al., 1995; Dreanno et al., 1999), and in
(Sarathoredon melanotheron, (Ruppell, 1852)) between 300 and 970 mOsm/kg
(Legendre et al., 2008). A recent study conducted by Valdebenito et al. (2016)
demonstrated that osmolality of the activation medium (Control = 815 mOsm/ kg; T1 =
716 mOsm/kg; T2 = 590 mOsm/kg) influenced the sperm motility of Patagonian blenny
(Eleginops maclovinus), a species that lives in the same areas as G. blacodes. The
highest flagellar activity (percentage of motile sperm and duration) was shown at pH =
8. Effer et al. (2013) described for M. australis, a fish that also lives in the same areas
as G. blacodes. The pH of the activation solution affects sperm motility to a low extent
(Cosson, 2004). It is generally accepted that the pH or ions present in the activation
solution polarize the cell membrane and stimulate the motility of fish spermatozoa by
changing the Na*/K" permeability (Morisawa & Morisawa, 1988; Boitano & Omoto,
1991). The pH of the internal cytoplasm is one of the most important factors that affect

sperm motility (Woolsey & Ingermann, 2003).
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The alkaline nature (pH = 8) of the activation solution seems to be the most suitable for
species such as turbot (Chauvaud et al., 1995), halibut (Hippoglossus stenolepis)
(Billard et al., 1993). According to Cosson et al. (2008b, c), the pH may reduce or
prolong motility, but it is not the principal parameter in motility initiation, despite

intracellular pH playing a key role in sperm maturation in vivo (Cierezko, 2008).

In conclusion, in the current study, we showed that the motility of G. blacodes
intratesticular spermatozoa is initiated by hyperosmotic medium. Varying temperature
and osmolality of the activation medium demonstrated an optimal effect on sperm
motility, whereas the pH of the activation solution affected sperm motility to a lesser
extent. The fertilization rate was high at 73.9 %; however, more tests need to be done to
improve these results. Finally, considering the importance of fish reproduction in
captivity and in the wild, it is advisable to deepen research in cellular aspects, thus
providing useful information for the elaboration of means of cultivation and other inputs

used in the management of gametes of this species.
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Abstract

The objective of this study was to evaluate the spermatic function such as mitochondrial
membrane potential, cytoplasmic membrane integrity, DNA integrity, motility and
fertility in Genypterus blacodes intratesticular spermatozoa. The intratesticular
spermatozoa were diluted in StorFish® in a ratio of 1:1 (testicle volume: extender) and
activated in seawater. The percentage of mitochondrial membrane potential (AYMMit,
JC-1 staining), cytoplasm membrane integrity (SYBR-14/P1) and DNA integrity
[transferase dUTP (deoxyuridine triphosphate) nick-end labelling (TUNEL) were
determined and evaluated by flow cytometry, whereas the motility was evaluated
subjectively by optical microscope and Computer Assisted Sperm Analyzer and the
fertility was evaluated using 4.5 ml sperm + 1.5L mass + 500 ml of sea water in a ratio
of 1:1 (testicle volume: extender). The results of this study showed that G. blacodes
intratescular spermatozoa had sperm density of 5.6 + 0.12 x 10° spermatozoa/mL.
Sperm motility was initiated in contact with a hyperosmotic swimming medium. The
mean = SD of DNA fragmentation was 1.175 + 1.14%; plasma membrane integrity was
83.87 + 6.06%; mitochondrial membrane potential was 46.26 * 14.34%; motility
(subjective) was 88.75 + 8.56%; 23.125 + 2.58% Computer Assisted Sperm Analyzer
and fertility was 68.9 + 25.91%. The mean + SD rate of motility variables were velocity
curved-line (67.3 = 22.7 um/s); velocity straight line (55.4 + 24.29 um/s); velocity
average path (60.0 £ 23.6 um/s); linearity (84.8 £ 7.62%); wobble (93.0 + 4.18%). The
motility showed a positive correlation with mitochondrial membrane potential (r= 0.94)
and citoplasmatic membrane integrity (r= 0.92). Additionally, the velocity straight line
and velocity curved-line correlated very well with the mitochondrial membrane

potential (r=0.97; r=0.97) and fertility (r= 0.84; r=0.86, respectively).
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Moreover, fertility was positively correlated with motility (r= 0.89) and mitochondrial
membrane potential (r= 0.87). The results provide new data on G. blacodes sperm

quality evaluated by flow cytometry and fertility.

Keywords: Genypterus blacodes; sperm motility; sperm function; flow cytometry
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3. Introduction

During the past years, the overexploitation of fisheries resulted in an increase of
aquaculture production to fulfil the market demands on marine products of a global
exponentially growing human population. The optimization of reproductive
performance on husbandry broodstock has been essential to obtain high quality fry,
which is imperative to allow the aquaculture industry produce high quality fish. Fish
aquaculture production, as fish recruitment in the wild, depends directly on the quality
and quantity of eggs available during the reproductive season (Lahnsteiner et al., 2009).
The economic importance and high commercial demand of the Genypterus blacodes
primarily from Chile and world markets is well known. However, the population of the
G. blacodes has declined to such a degree that major concerns have been raised for its
long-term survival (Chong et al., 2014). Efforts have been made to understand the life
cycle and reproductive biology of this species. Sperm quality has been a focus of
research, since it can be used as a biomarker of the male status (Cabrita et al., 2009;
Chauvaud et al., 1995). Study of sperm function is essential to understand the overall
dynamics of fertilization process in fish. A quality assessment must be reliable and fast
to be useful in commercial aquaculture (Cabrita et al., 2009). The parameters of
spermatic function, such as motility, mitochondrial membrane potential (JC-
1/rhodamine), cytoplasm membrane integrity (SYBR-14/PI), and DNA integrity
[transferase dUTP (deoxyuridine triphosphate) nickend labelling (TUNEL)] single-cell
electrophoresis (COMET)], have been determined in several species using flow
cytometry or electrophoresis (Lahnsteiner et al., 1996, 1998; Fauvel et al., 1998; Geffen

& Evans, 2000; Chowdhury & Joy, 2001; Rurangwa et al., 2004; Figueroa et al., 2016).
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In addition, the evaluation of sperm motility and other Kinetic parameters, like
curvilinear, straight line and average path velocities, is an essential tool in the
examination of sperm quality in many fish species, including the G. blacodes (Marco-
Jiménez et al., 2006; Asturiano et al., 2007; Gallego et al., 2012). Various studies have
demonstrated that the majority of the characteristics of sperm function analyzed
contribute to the general quality of the spermatozoa (Alavi et al., 2008; Bobe & Labbé
2010). Motility, one of the most frequently used parameters to assess semen quality,
generally presents a positive correlation with fertilizing capacity (Figueroa et al., 2016).
Traditionally, motility was assessed subjectively by determining the percentage of
motile spermatozoa in a scale such as the one of Sanchez-Rodriguez & Billard (1977)
and Cosson et al. (2008b) with a subjective classification, which assigns a level of 0
when no spermatozoa are moving and 5 when all of them are moving vigorously,
additionally, by Computer Assisted Sperm Analyzer (CASA). Nowadays, there is no
research regarding characterization and the evaluation of sperm function G. blacodes in
the literature. The characterization and the study of spermatic function of G. blacodes
would allow establish a base line of sperm quality-markers and also improve the
management in vitro of the gamete species. The present study is the first report on the
evaluation of the sperm function in intratesticular spermatozoa of G. blacodes. Thus, the
aim of this study was to evaluate the sperm function such as motility, mitochondrial
membrane potential, cytoplasm membrane integrity and DNA integrity and fertility in

intratesticular spermatozoa of G. blacodes through flow cytometry analysis.
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3.1. Materials and Methods

All chemicals used in this study were purchased from Sigma (www.sigmaaldrich.com),
unless otherwise indicated. All solutions were prepared using water from a Milli-Q
Synthesis System. The live-dead sperm viability kit (SYBR-14/PI; Thermo-Fisher) the
situ cell-death detection kit (TUNEL; Roche Diagnostics GmbH) and the mitochondrial
permeability detection kit AK-116 (MiT-E-¥, JC-1; Biomol International LP) test Kits

were also used.

3.1.1. Broodstock males

This research was conducted at the Engineering, Biotechnology and Applied
Biochemistry Laboratory (LIBBA) and at the Center for Biotechnology in Reproduction
(CEBIOR), La Frontera University, Chile. Twelve (n = 12) males G. blacodes were
caught in the wild with a trap in Piedra Azul (41° 56°40.86°" S and 72° 73°46. 62°° W),
located near the city of Puerto Montt, Los Lagos Region, Chile with average weight

1.94 £ 1.06 kg and total length of 62.6 + 4.45 cm.

3.1.2. Collection of gametes

This study was carried out with intratesticular spermatozoa, which were collected
according to the procedure described by Cabrita et al. (2005). During transport, the
specimens were kept alive. The specimens of G. blacodes were anesthetized by
immersion with AQUI-S® (BAYER S.A. Animal Health-Chile) for a few minutes and
then decapitated. Their testicles were surgically extracted and carefully cleaned with
distilled water, dried and blood remnants were removed. The testis were transferred
individually into an Eppendorf tube on ice and were transported using oxygenated
containers with a constant temperature of 4°C. The testes were sectioned directly in the
Eppendorf tube (on ice) using a scalpel and collecting the sperm by dripping directly

into a graduated, sterile, dry, disposable plastic container maintained at 4 °C.
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In addition, the intratesticular spermatozoa were diluted in StorFish® (Imv,
Technologies, France) medium (dilution 1:1) and centrifuged twice at 1800 rpm for 5
minutes. Immediately after collection, sperm motility and concentration were

determined using a phase contrast microscope (Carl Zeiss, Jena, Germany).

3.1.3. Sperm density

Sperm density (number of spermatozoa/mL) was determined in six males using a
Neubauer hemocytometer according to the methodology described by Merino et al.
(2011) and Figueroa et al. (2015) for blood cells and spermatozoa at a dilution of 1 puL
of sperm in 1200 uL of StorFish® medium (Imv, Technologies, France) using a phase

contrast microscope (Carl Zeiss, Jena, Germany).

3.1.4. Sperm evaluation

3.1.4.1. Motility by Computer Assisted Sperm Analyzer (CASA)

Motility (percentage of motile spermatozoa) was performed using a phase contrast
microscope (Carl Zeiss Jena). In addition, the percentage of sperm motility was
assessed using a modified protocol of Cosson (2004) and Li et al. (2012) for optical
microscope with Exposure Scope stroboscopic light (FROV, Vodnany, Czech Republic)
by CASA software. The percentage of motile spermatozoa and the spermatozoa average
velocity (ums™) were determined at x200 magnification in a phase contrast Olympus
BX 41 microscope after activation of motility. To prevent the spermatozoa from
adhering to the slide, 0. 25% (w/v) of Pluronic was added to the activator (seawater).
The spermatozoa were recorded with a SSC-G818digital video camera mounted on the
microscope, filming at 25 frames s™ at 50 Hz. They were analyzed using ImageJ CASA

software for processing images and videos.
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The following sperm motility variables were evaluated: curved line velocity (VCL, ums
1y, average path velocity (VAP, pms™), straight-line velocity (VSL, ums™), linearity

(LIN, %), wobble (WOB, %). The analysis was replicated three times in each trial.

3.1.4.2. Motility Subjective

Immediately after collection, spermatozoa motility and concentration were determined
using a phase contrast microscope (Carl Zeiss, Jena, Germany). Sperm motility
(percentage of motile spermatozoa) was evaluated subjectively according to the protocol
described by Cosson et al. (2008b), values from 0 to 100% were attributed to the
samples, i.e. from 0% of spermatozoa with progressive motility to 100% of spermatozoa
with progressive motility according to the 1 to 5 scale: 1 = 0-5%; 2 = 5-25%; 3 = 25-
50%; 4 = 50-75%; 5 = 75-100% by the same evaluator . Three observations were done

per sample.

3.1.4.3. DNA fragmentation

To assess DNA fragmentation, the TUNEL (In Situ Cell Death Detection Kit,
Fluorescein, Roche Diagnostics GmbH, Mannheim, Germany) procedure was used. The
500 pL sperm suspension at concentration 3 x 10% /mL was centrifuged for 5 min at
1300 rpm. The pellet was fixed at 500 pL with 4% formaldehyde in PBS for 1 h at room
temperature. Next, the suspension was washed in PBS by centrifuging at 1300 rpm for 5
min; the pellet was re-suspended in 300 pL of 0.5% Triton X-100 prepared in 0.1%
sodium citrate for 15 min at 4°C, and then washed in PBS for 5 min at 1300 rpm. The
pellet was then re-suspended in 50 pL TUNEL reaction mixture (TdT and fluorescein-
dUTP) and incubated for 60 min at 37°C in a humidified atmosphere in the dark. Then
the spermatozoa were stained with 5 pL propidium iodide (1.5 mM), re-suspended in

200 pL PBS and washed for 5 min at 1300 rpm.
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Afterwards, the pellet was re-suspended in 200 pL PBS. After washing, the label at the
damaged DNA sites was analyzed directly by flow cytometry and confocal microscopy.
The TUNEL positive spermatozoa, with fragmented DNA, appeared stained green. The

analysis in each trial was replicated three times.

3.1.4.4. Cytoplasm membrane integrity

The viability of the spermatozoa and the integrity of the cytoplasm membrane were
assessed using the LIVE/DEAD Sperm Viability Kit (SYBR-14/P1 dye) (L7011-
Invitrogen Molecular Probes, USA). For this test, 3 x 10° spermatozoa/mL were
resuspended in 200 uL PBS + 1 pL SYBR-14 (0.025 mM) + 1 pL propidium iodide
(PD) (2.4 mM). After the spermatozoa had been exposed to this solution for 10 min at
4°C, the sample was centrifuged at 1.300 rpm for 5 minutes, a further 200 pL of PBS
were added prior to sperm analysis by flow cytometry and confocal microscopy. The
SYBR-14 positive spermatozoa, with cytoplasm membrane integrity, appeared stained

green. The analysis in each trial was replicated three times.

3.1.4.5. Mitochondrial membrane potential (AYM)

To evaluate mitochondrial activity, changes in the mitochondrial membrane potential
(AYM) were determined using JC-1 (MitoProbe™ JC-1 Assay Kit, M34152, Life
technologies, Molecular Probes) a fluorescent cation dye, 5,5°,6,6 -tetrachloro-1,1",3,3"
tetraethylbenzymidazolyl carbocyanine iodide. The JC-1 is a lipophilic dye that is
internalized by all functioning mitochondria, where it fluoresces green. In highly
functional mitochondria, the concentration of JC-1 inside the mitochondria increases
and the stain forms aggregates that fluoresce red. This test was performed according to
the manufacturer’s instructions for the Mitochondrial Permeability Detection Kit AK-

116 (MiT-E-¥™, BIOMOL International LP, Plymouth Meeting, PA, USA).
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Briefly, 1 uL JC-1 was added to the 250 pL Sperm suspension and incubated for 10 min
at 4°C in the dark. The cell suspension was then centrifuged for 5 min at 1300 rpm, the
supernatant was discarded and the sperm pellet re-suspended in 200 pL PBS and
immediately analyzed by flow cytometry and confocal microscopy. The percentage of
red-stained cells was recorded as a cell population showing high A¥YM, and the
percentage of green-stained cells as a cell population with low or reduced AYM. The

analysis in each trial was replicated thrice.

3.1.4.6. Fertility

The fertility was evaluated with 4.5 ml sperm + 1.5 L mass + 500ml of seawater. It was
mixed well and allowed to keep for 5 min, after was added 1.5 L of seawater at 12°C.
Fertilization was evaluated by observation of the first cleavages (segmentation), those

with segmented blastodiscs were considered as fertilized.

3.1.5. Flow cytometry

The FACS Calibur flow cytometer (Becton Dickinson, Mountain View, CA, USA) was
used to determine the following variables: sperm membrane integrity (with SYBR-
14/P1), mitochondrial membrane potential (with JC-1) and DNA fragmentation (by
TUNEL). A minimum of 10,000 spermatozoa were examined in each assay at a flow
rate of 100 cells/s. The spermatozoon probe was gated using 90-degree and forward-
angle light scatter to exclude debris and aggregates. The excitation wavelength was 488
nm, supplied by an argon laser at 15 mW. Green fluorescence (480-530 nm) was
measured in the FL-1 channel and red fluorescence in the FL-2 channel (580-630 nm)

and FL-3 channel (610 nm).
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3.1.6. Statistical analysis

The percentage data were analyzed using the statistics program Prisma® version 6.0.
Mean = SD was used to assess rates of DNA fragmentation, viability/plasma membrane
integrity, mitochondrial membrane potential, motility and fertility. Pearson correlation
was used to relate the motility with membrane integrity, mitochondrial membrane

potential, and fertilization rates. The level of significance was set at p<0.05.

3.2. RESULTS
3.2.1. Spermatological parameters
The testicle volume for each males of G. blacodes was between 1.2 and 2.5 mL, the

mean was 1.47 £ 0.56 mL (n = 10).

3.2.2. Sperm density
Sperm density (number of spermatozoa/mL) was an average 5.6 + 0.12 x 10°

spermatozoa/mL

3.2.3. Evaluation of membrane integrity, mitochondrial membrane potential, DNA

integrity, motility and fertility

The rate of sperm motility of intratesticular spermatozoa G. blacodes and its variables
were expressed by mean + SD. The motility was assessed subjectively and by CASA
with a level of 88.75 + 8.56% and 23.12 + 2.58%, respectively. The rate of plasma
membrane integrity of intratesticular spermatozoa registered by flow cytometer was
83.87 = 6.06%, mitochondrial membrane potential was 45.26 + 14.34%; DNA
fragmentation was 1.175 + 1.14%, whereas the fertility showed a rate of 68.9 + 25.9%

(Table 1),
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Figure 1 shows the mean + SD rate of motility variables a) VCL (67.3 £ 22.79 um/s);

VSL (55.4  24.29 um/s); VAP (60.0 + 23.66 um/s, b) LIN (84.8 + 7.62%); WOB (93.0

+ 4.18%) and motility by CASA.

Table 1. Mean = S.D rate of sperm functionality variables: citoplasmatic membrane

integrity; mitochondrial membrane potential; DNA fragmentation, motility and fertility

of intratesticular spermatozoa G. blacodes (P<0. 05, n=12).

Sperm function Minimum Maximum Mean SD
Motility (%) 75 100 88.75 + 8.56
Plasma membrane integrity (%) 77.9 935 83.87 +6.06
Mitochondrial membrane potential (%) 16.9 71.8 45.26 +14.34
DNA fragmentation (%) 0.2 3.8 1.175 +1.14
Fertility (%) 36.3 100 68.9 +25.9
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Figure 1. (a) Mean £ S.D velocity: VCL, VSL and VAP; (b) Mean = S.D rate of

motility variables (Motility, LIN and WOB) of intratesticular spermatozoa G. blacodes

that were activated in sea water (P<0.05, n=10).
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3.2.4. Relationships between motility and plasma membrane integrity,

mitochondrial membrane integrity, DNA fragmentation and fertility

The motility calculated subjectively shows positive correlation with mitochondrial
membrane potential, citoplasmatic membrane integrity, (Figure 2). Additionally, the
motility variables such as VCL and VSL show positive correlation with mitochondrial
membrane potential (Figure 3). In addition, the fertility shows positive correlation with
the motility and mitochondrial membrane potential, also shows a good correlation with

VCL and VSL (Figure. 4).
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Figure 2. Relationship between motility, mitochondrial membrane potential and
citoplasmatic membrane integrity of intratesticular spermatozoa G. blacodes that were
activated in seawater: a) Positive correlation between motility and mitochondrial

membrane potential (r= 0.94); b) citoplasmatic membrane integrity (r =0.92) (n= 10).

55



1507 y = 0.916x +22.68 @) 1507 y= 2.124x £48.17 (b)

r=0.953 r= 0.976
p = 0.0001 p = 0.0001

= 1001 ® 3 100 ()

£ ) £ )

2 =

0 m

S 504 y 2 50- .

0 T T T T 1 0 I 1 T T 1
30 40 50 60 70 80 30 40 50 60 70 80

Mitochondrial membrane potential

Mitochondrial membrane potential

Figure 3. Relationship between VCL, VSL and mitochondrial membrane potential of

intratesticular spermatozoa G. blacodes that were activated in seawater. (a) Positive

correlation between VSL and mitochondrial membrane potential (r = 0.97); (b) Positive

correlation between VCL and mitochondrial membrane potential (r = 0.91) (n= 10).
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Figure 4. Relationship between fertility, motility, mitochondrial membrane potential
VSL and VCL of intratesticular spermatozoa G. blacodes: a) positive correlation
between fertility and motility (r = 0.89); b) correlation between fertility and
mitochondrial membrane potential (r = 0.87); c) positive correlation between fertility

VSL (r =84) and d) VCL (r = 0.86) (n=10).

3.3. Discussion

The evaluation of spermatic function has been reported for various marine species (Li et
al., 2009). Motility is regarded as one of the most essential parameters related to sperm
quality, and decrease in spermatozoa movement performance under in vivo or in vitro
conditions is a common reason for observation of reduced sperm fertility (Trigo et al.,
2014). The results of this study showed that the rate of sperm motility was gradually
reduced subjectively to CASA due to the evaluation interval 88.75 £ 8.56% (subjective)
to 23.12 + 2.58% (CASA) (Table 1), motility subjective was evaluated after four hours
of the sample collection, whereas sperm motility by CASA was evaluated five hours
after sample collection. Additional parameters, such as DNA integrity, citoplasmatic
membrane integrity and mitochondrial membrane potential, are also important

indicators of sperm fertilizing potential (Anna et al., 2012).
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Sperm viability and mitochondrial membrane potential are two of several properties that
can be determined using SYBR-14/PI dual-staining technique and JC-1/PI, respectively,
these fluorescent dye combinations have been used to estimate cell quality and viability
with sperm of G. blacodes spermatozoa. The SYBR-14 is able to penetrate the cell
membrane of the sperm head and stain the nucleic acids of viable cells. Propidium
iodide is not able to pass through the membrane of living cells, but it is able to penetrate
and stain the nuclear DNA of degenerated or dead sperm. The lipophilic compound JC-
1 has been used to evaluate the depolarization of the mitochondrial membrane in the
spermatozoa of several species of mammals and fishes (Figueroa et al., 2014). The use
of fluorescent dyes to evaluate viability and mitochondrial function should be compared
with fertilization rates to further evaluate the utility of these flow cytometry procedures
assessing sperm quality of fish. The importance of the sperm plasma membrane lies
mainly in the ion transport functions, motility, water balance, signal receivers involved
with fertilization (gametes fusion), and regulation of fluidity and permeability
(Lahnsteiner et al., 2009; Berrios et al., 2010). The importance of physiological
parameters such as the integrity of the cytoplasm and mitochondrial membranes in
fertilization is known. The DNA quality of spermatozoa is an important indicator of the
correct transmission of genetic material from one generation to the next. The DNA
damage correlates strongly with the appearance of mutagenic alterations; however,
spermatozoa with genetic material damaged by freezing are capable of fertilization
(Twigg et al., 1998). The low rate of the parameter such as mitochondrial membrane
integrity may be associated with stress oxidative (Figueroa et al., 2014. Nevertheless,
the motility correlated with mitochondrial membrane potential, and citoplasmatic

membrane integrity (r=0.94; r=0.92, respectively) (Figure 2).
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This may result from the high integrity of the cytoplasm membranes (88.75 + 8.56%)
and the low mitochondrial potential (45.26 + 14.34%) due to the possible formation to
osmotic changes. The advantage of diluting semen is a reduction in sperm density, thus,
oxidation of plasma and mitochondrial membranes are prevented, that is, the dilution
produces a buffering capacity and delivers energy substrate that allows the maintenance
of spermatozoa with a stable pH and does not allow cells to dehydrate (Bobe & Labbe,
2009; Dziewulska et al., 2010). The role of the mitochondria has been considered one of
the key factors in sperm functionality and fertilizing capacity in all species. Changes in
mitochondrial membrane potential are a good indicator of functional impairment

(Merino et al., 20114, b).

Very few studies have correlated motility with mitochondrial membrane integrity.
Additionally, studies performed by Figueroa et al. (2014, 2015b) in Salmo salar showed
a positive correlation between VCL, VSL and mitochondrial membrane potential. The
results of this study showed positive correlation between VCL, VSL and mitochondrial
membrane potential (r= 0.97; r= 0.97, respectively). The activation and duration of
motility require a large amount of ATP, which is supplied by the mitochondrion in most
fish. For each examined sampling, we observed considerable variation in the
percentages of spermatozoa regarding motility, plasma membrane integrity,
mitochondrial membrane potential and DNA fragmentation. Additionally, the results of
this study indicate a positive correlation of the fertility with motility, mitochondrial
membrane potential, plasma membrane integrity, VSL and VCL (r= 0.89; r= 0.87; r=

0.92; r=0.84 and r= 0. 86, respectively) (Figure 3 and 4).
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Studies of embryonic development are important in terms of understanding basic
biology and potential applications (Ishigaki et al., 2016). Teleost fertilization exhibits
special distinct characteristics from those of other vertebrates and even other fish
groups. In economically productive aquaculture, one very important aspect is the
availability of an adequate supply of fertile eggs. The assessment of the fecundity of
fishes is of especial importance in biological studies, particularly as far as the
management of heavily fished commercial species is concerned. The average rate of
fertility was 68.9 % using G. blacodes intratesticular spermatozoa of wild males with
eggs of females in captivity. This result is very important for artificial reproduction of
this specie. It is the first report on fertility of G. blacodes. The use of intratesticular
spermatozoa for in vitro fertilization is a key tool for breeding this species in captivity
and hence would allow its introduction in aquaculture industry. Gage et al. (2004)
concluded that fertilization was more successful for spermatozoa capable of faster
curvilinear swimming, although high motility often results in high fertility rates. Good
fertilization rates were also obtained from Atlantic salmon (Salmo salar) and rainbow
trout (O. mykiss) spermatozoa that showed little or no motility (Levanduski et al., 1988;

Figueroa et al., 2016).

In conclusion, in this study we observed a high percentage of membrane integrity and
motility (subjective), low mitochondrial membrane potential, DNA fragmentation and
motility (CASA) and high percentage of fertility. Finally, considering the importance of
the fish reproduction in captivity and wild, it is advisable to deepen research in cellular
aspects, hence, providing useful information for the elaboration of means of cultivation
and other inputs used in the management of gametes of this species. Moreover, this
study shows great prospects for development in biotechnology and production for the

world G. blacodes industry.
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Abstract

In this study, scanning electron microscopy and transmission were used as techniques to
describe the ultrastructure and morphology the Genypterus blacodes spermatozoa.
Findings revealed that the G. blacodes spermatozoa can be differentiated into three
major parts: an ovoid head without an acrosome, a short mid-piece, and a long
flagellum. The mean length of the spermatozoa was 57.6 + 6.08 um, with flagella length
of 56.2 + 7.2 ym, a head length of 1.47 £ 0.2 um, and head width of 0.89 £ 0.06 pm.
The mid-piece measure 0.72 £ 0.16 um total, with 0.31 £ 0.02 um length, 0.6 £ 0.05 pm
wide. The short mid-piece contains 4 or 5 mitochondria. The main piece of the
flagellum had short irregular side-fins. The axoneme composed the typical 9+2
microtubular doublet structure and the mitochondria were separated from the axoneme
by a cytoplasmic canal. The present study reveals that G. blacodes sperm can be
categorized as being of a primitive type. This study for the first time provides a

comprehensive detail on the ultrastructure and morphology in G. blacodes.

Keywords: Morphology, ultrastructure, Genypterus blacodes, spermatozoa, scanning

electron microscopy, transmission electron microscopy
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4. Introduction

Descriptions and knowledge on morphology and ultrastructural of fish sperm provide
information for understanding the taxonomic classifications, relationships at family,
subfamily and species and establish phylogenetic relationships among fish species
(Mattei, 1991; Lahnsteiner & Patzner, 2008), also, allow a better in vitro management
of the species. In the teleost species studied to date, the spermatozoa structure has
revealed a high diversity specially, in the head shape, in the number shape and location
of mitochondria, and length and from aflagellate to biflagellae according to whether a
species adopts internal or external fertilization (Guo et al., 2016). The application of
scanning electron microscopy (SEM) and transmission (TEM) in fish taxonomy,
however, is a relatively recent development (Kaur & Dua, 2004; Johal et al., 2006; Liu
et al., 2008). There are difficulties for comparing the results of different studies
(Psenicka et al., 2007) because; (i) each study may not describe an identical set of fine
structural parameters, ii) fixation and staining procedures may also play an important
role in affecting results comparability, and (iii) the number of samples varies greatly

between studies.

Currently, research and development of G. blacodes aquaculture has been initiated
in over six countries including Chile. The G. blacodes fishery is developed in Chilean
waters between Talcahuano (36° 44'S) and south of Cabo de Hornos (57°00'S) from
Coquimbo to austral zone (41°28'-57°00'S) (Wiff et al., 2011). It is a species with the
greatest farming potential in Chile, due the exceptional quality of its flesh and high
commercial value (Vega et al., 2012). Despite the importance of this species, very little
is known about its reproductive biology. Currently, in Chile, breeding of this fish in
captivity is found in the initial stage and hatchery production of this species is yet to be

developed for large-scale farming.
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Considering the importance of protecting this fish, it is essential to understand its
reproductive biology. Therefore, the present study aimed to investigate the ultrastructure

and morphology of Genypterus blacodes spermatozoa using SEM and TEM.

4.1. Materials and methods

The specimens were caught in the wild with a trap at Piedra Azul (41° 56’40.86’” S and
72°73°46. 62°° W), located near the city of Puerto Montt, Los Lagos Region, Chile with
an average (body weight = 1 960 +1.06 g, Total body length 62.6 + 4.45 cm, n = 10).
This study was carried out with intratesticular spermatozoa and they were collected
according to the procedure described by Cabrita et al. (2005). G. blacodes males were
anaesthetized and decapitated, the testicles were surgically extracted and carefully
cleaned. The testes were cut into pieces directly in the Eppendorf tube (on ice) using
scalpel and collecting sperm by directly dripping it into graduated, sterile, dry,
disposable plastic containers, kept at 4 °C. Sperm samples were diluted at a ratio of 1:1
(testicle volume: extender medium nonactivating (Storfish® 1x = 300 mOsm/kg and pH
8.1) and centrifuged twice at 1800 rpm for 5 minutes.

Morphology and ultrastructure were assessed by means of scanning electron
microscopy (SEM) and transmission (TEM), respectively following the methodology of
Luo et al. (2011), modified, fixing for 48 h in glutaraldehyde 2.5% in a buffer of
sodium cacodylate 0.1 M (pH 7.5) at 20-25 °C. For SEM, spermatozoa were dehydrated
in a graded series of acetone and dried to the critical point (Polaron E 3000), changing
acetone for CO> (four times, 10 min each). After fixation, the sperm pellets were
processed for TEM. For TEM, the samples were dehydrated as described above, and
embedded in epoxide resin. Then, ultra-thin sections of 60-100 nm thickness were

collected using glass knives.
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Later, the sections were placed on copper grids, stained with uranyl acetate and lead

citrate, and screened under a TEM (Hitachi H700 TE) for screening the ultra-cellular

structure of sperm. Spermatozoa were coated with gold/palladium at approx. 20 nm,

observed and photographed using SEM (ZEISS 409 DMS, Germany). All SEM and

TEM measurements were evaluated using Prisma® software version 6.0. (Version 4.0.1

for Windows, Olympus Optical Co., Hamburg, Germany). Spermatozoa morphological

characteristics were assessed and expressed as mean * standard deviation, number, and

range. The experiment of SEM and TEM has been repeated four times.

4.2. Results and discussion

Morphologically, G. blacodes spermatozoa consists of three major parts: an
ovoid head without acrosome, short midpiece and a single uniflagellate and can be
categorized as a primitive type (Fig. 1A, B and E). Spermatozoa without acrosome
are common characteristics in many teleost species such as Eleginops maclovinus
(Valdebenito et al., 2016), Merluccius australis (Effer et al., 2013) Brachymystax
lenok tsinlingensis (Guo et al., 2016), Scatophagus argus (Madhavi et al., 2015)
except, Atlantic eel sperm (Gibbons et al., 1983) and chondrostean fishes
(sturgeons) containing acrosome (Ginsburg, 1968). According to the Kim et al.,
2011, the sperm with an acrosome-less head is closely associated with the egg
micropyle diameter of the species and it is the likely result of coevolution with
possessing a micropyle, an opening in the zona pellucid through which sperm enter
to fertilize the egg. G. blacodes spermatozoa have total length of 57.6 + 6.08 um
and flagellum 56.2 + 7.2 um (n =20). The head of the spermatozoa was small,
spherical 1.47 £ 0.2 um long and 0.89 £ 0.06 pum wide (n = 20) (Table 1). G.

blacodes sperm head has ovoid shape and contains an ovoid nucleus.

71



The small ovoid head found in G. blacodes is the result of a simple spermiogenesis
process. However, Psenicka et al. (2007) concluded that an elongated head present
in Siberian sturgeon (Acipenser baerii) indicated a more complex spermiogenic
process that is considered as an advanced morphological sperm feature. The
hydrodynamic shape of the head can moderate swimming ability and velocity
(Malo et al., 2006) and is considered to be a primitive or ect-aquasperm. G.
blacodes morphology described in this research using SEM agrees with these
patterns and the characteristics described by Cosson et al. (2008b) in turbot 50 um
(0.6 pum in diameter) and halibut; 40 um (0.4 um in diameter) in sea bass; 50 um in
hake; 60-70 um in cod; and 45 pum in tuna. Additionally, Ginzburg (1972) reports
that herring (Clupea harengus pallasis) shows a total length of 43 um and for
Atlantic salmon (Salmo salar) a total length of 63 pm. Comparing the
morphological features of a G. blacodes spermatozoon with those of other fish
species, showed them to be closely similar in overall shape to T. bifasciatum, Coris.
julis (Mattei, 1991; Lahnsteiner & Patzner, 2008;). In the latter species,
spermatozoa head length varied from about 1 to 3 pum as compared with G.
blacodes spermatozoa, of length 1.47 £ 0.2 um. Similar to E. masquinongy, E.
lucius spermatozoon have a spherical head, 1.40 mm in diameter (Alavi et al.,
2008). The midpiece is elongated in G. blacodes spermatozoa, different of those
that have been demonstrated in salmonid spermatozoa or sturgeons (Lahnsteiner &

Patzner, 2008; Psenicka et al., 2008).
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Figure 1. Scanning electron microscopy (SEM) micrographs of Genypterus blacodes.
A) Spermatozoa with their characteristic: H, head; F, flagella; SF, side-fins: B) General
views of different rotations of the sperm with mitochondrial regions. H, head; MP, mid-
piece; F, flagellum; M, mitochondria; SF, side-fins; C) The mid-piece with
mitochondria between 4 or 5; D) Flagellum without head and mid-piece; E) Magnified
view of a spermatozoon with prominent H, head; F, flagellum; M, mitochondria, . Scale
bars: 1um (A, B, C and E), 2 um (E).
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Table 1. Ultrastructural and morphological variables of Genypterus blacodes

spermatozoa.
Spermatozoa Variables
Sperm size (um)  Total length
57.6 £ 6.08
Head (um) Length Width Nucleus length Nucleus width
1.47+£0.2 0.89 £ 0.06 0.52 £0.08 1.0+0.06
Mid-piece (um) Length Width Mitochondria Mitochondria
0.31 £ 0.02 0.6 £0.05 diameter number
0.42 £ 0.04 4or5
Flagellum (um) Length Width Flagellum diameter
56.2+7.2 0.14+0.02 0.14 £0.02
Axoneme (nm) PDM CDM Microtubule Axoneme
31.35+5.13 38.42+3.21 diameter pattern
15.25+£1.05 9+2

Data are mean = SD (n = 20), PDM: Peripheral doublets of microtubules width; CDM Central doublets of

microtubules width

The present investigation confirmed that G. blacodes sperm possess the configuration of

the Uniflagellate acrosome-less aquasperm which is consistent with this species having

external fertilization. It is reported that the shape of the head is highly variable among

teleosts sperm. The shape of the nucleus in fish sperm is species specific and it varies

from species to species (Maricchiolo et al., 2010). According to Baccetti et al. (1984),

swimming speed and duration of motility of sperm are influenced by the size of the

mid-piece. The midpiece has an extension of 0.72 = 0.16 pm with 0.31 + 0.02 pm on

length, and 0.6 £ 0.05 um wide (n =20). In G. blacodes, the mid-piece is short which is

a common feature in teleost where fertilization is external (Vergilio et al., 2013).
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The small mid-piece length and a long flagellum in G. blacodes sperm clearly suggests
the sperm cell can move quickly through the water column to fertilize a free floating
egg which is released by the female brooder. It is believed that swimming speed of
sperm help to reduce the distance between the dispersed gametes within the water
column. The short mid-piece of G. blacodes spermatozoa shows 4 or 5 mitochondria as
a circle like structure (Fig. 1C). The role of mitochondria in the mid-piece of the sperm
is an energy source for generating adenosine triphosphate (ATP) for sperm motility as
previously documented (Billard et al., 2000). The ATP is also used by the dynein arms,
which helps in a self-oscillatory bending behavior of the flagellar axoneme
(Maricchiolo et al., 2004). The number of mitochondria present in the mid-piece of
sperm of various species have been reported for the Common two-banded seabream
Diplodus cervinus cervinus which have 1 mitochondrium (Mahmoud, 2010); and there
are 4-6 in Common barbel Barbus barbus (Alavi et al., 2008); 5-6 in Leopard
coralgrouper Plectropomus leopardus (Gwo et al., 1994); 6 in Atlantic bluefin tuna
Thynnus thynnus (Abascal et al., 2002) and 6-9 in Longtooth grouper Epinephelus
bruneus (Kim et al., 2013). The presence of 4 or 5 mitochondrion in G. blacodes
indicate a greater energy delivering capacity for the sperm compared with those species
possessing a fewer number of mitochondria. The number of mitochondria is an
important factor for sperm motility as a source of energy and thereby has a significant
role in fertilizing eggs, also, plays an important role in reproductive activity of the fish
(Lahnsteiner & Patzner, 1995). Movement of the flagellum depends on how it is
attached to the mid-piece and the structural support provided by the associated

membranes.

75



The mid-piece, has several foldings of the cytoplasmic membrane and a shallow collar-
like structure providing structural support for the movement of flagellum during

swimming (Markovina, 2008).

Figure 2. TEM micrographs of Genypterus blacodes. A) Nu, nucleus; M, mitochondria;
Ax: axenoma; CC, cytoplasmic channel; NE, nuclear envelope: B) Nu, nucleus; M,
mitochondria; SF, side-fins; C) axoneme pattern (9+2): E) PDM, peripheral doublets of

microtubules; CDM, central doublets of microtubules; axoneme pattern (9+2).
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Transmission electron microscopic observations indicated the nucleus occupied a part of
the head and was composed of electron-dense, granular materials (chromatin)
surrounded by a nuclear envelop (Fig. 2A and 2B). The axoneme composed the typical
9+2 microtubular doublet structure with two central and nine peripheral doublet
microtubules. The mitochondria were separated from the axoneme by a cytoplasmic
canal (Fig. 2 A, B, C and D). The flagellum has surrounded by a cell membrane that
projected to form two side-fins located on the both sides of the flagellum (Fig 1A and
B). Even though the functions of side-fins are still unknown (Maricchiolo et al., 2004),
the presence could be accelerate the flagellar forward motion and also increase the
friction with the surrounding medium which results in an increased probability of
fertilization (Zhang et al., 1993; Cosson et al., 2000; Psenicka et al., 2007). The
presence of side-fins is not order or family-specific, as shown by Maricchiolo et al.
(2004) in Sparidae; Kristan et al. (2014) Percidae; and Hatef et al. (2011)
Acipenseridae. The mean width of the outer doublet and the central pair is 31.35 + 5.13
and 38 .42 + 3.21 nm, respectively (Table 1) (n = 20). Based on ultrastructure, the
spermatozoon of G. blacodes can be classified into Type | spermatozoa. Mattei (1991)

has reported that the spermatozoa of Type | contain an axoneme with a 9+2.

4.3. Conclusions

The present study provides important background on morphology and ultrastructure of
sperm G. blacodes. Detailed spermatozoa characteristics have been revealed in this
study including an ovoid shaped head without acrosome, a short midpiece, and a long
uniflagellum that attribute to the potential swimming ability for G. blacodes sperm and
primitive type. The information on the ultrastructure and morphology of G. blacodes
spermatozoa improves the understanding of its reproductive biology, with the potential

to contribute to the protection of this endangered species.
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In addition, this knowledge can assist in the development of artificial reproduction for
enhanced production of this species.
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CHAPTER YV

General discussion and conclusions
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5. GENERAL DISCUSSIONS

As mentioned in the introduction, G. blacodes, is one of the most important species and
commercialized in Chile, this species constitutes very important resources in artisanal
and industrial fishing. During the last years, they have been increasing their importance
in the artisanal fishing of internal waters. The characteristics G. blacodes profile it as a
species to diversify and generate competitiveness in Chilean aquaculture. However, in
recent decades landings of this species has been decreasing due to overexploitation, but
also because it is strongly regulated by catch quotas that are low comparatively to other
species. Currently, in Chile the culture of G. blacodes as a native fish is found in the
initial stages, is mainly oriented to the capture of wild juveniles and larvae production,
and requires a great research effort to obtain essential information. Sperm
characterization of G. blacodes during this Doctoral Thesis allows establishing a
baseline for further research. During this Doctoral Thesis, we have used intratesticular
spermatozoa because for this species it is difficult to find wild fully-sexually mature
male individuals; and sexual maturation in captivity has not been yet reported. The use
of intratesticular spermatozoa for in vitro fertilization is a key tool for breeding this

species in captivity and hence would allow its introduction in aquaculture industry.

Studies based on morphometric analysis of G. blacodes populations were realized in
Australian waters (Ward & Reilly, 2001) and New Zealand waters (Smith & Francis,
1982; Colman, 1995). Canales-Aguirre et al. (2010), used microsatellites to determine
genetic variability and population zones where G. blacodes is being fully exploited in
Chilean waters. During the eighties the fleet began directly targeting the pink cusk-eel

and since the early nineties, were recording high levels of capture.
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Population attributes of G. blacodes such as its low resilience to exploitation, slow
growth, medium longevity, and a sedentary life-style facilitate the study of life history
tradeoffs (Ward et al., 2001; Wiff et al., 2007). According to indicators studied by
Céspedes et al. (2011), in Chile, the size structures of industrial capture of G. blacodes
between 2009 and 2010 showed unimodal distributions, with a greater presence of
juveniles. New Zealand has determined the existence of at least three G. blacodes stocks
through several techniques including allozymes (Smith & Francis, 1982), morphometry
(Colman, 1995), vital parameters and size structure (Horn, 1993). The maximum length
in Chile of G. blacodes is 160 cm, whereas the average length of capture is 80-90 cm
(Céspedes et al., 2014). Importantly, the G. blacodes fishery is characterized by
infringing a significant proportion of juveniles (under 90 cm height) with age at first
maturity 6 years (82 cm) (Wiff et al., 2011).

Studies using allozyme and microsatellite techniques to look at the stock structure
of G. blacodes inhabiting the Australian coast have found no statistical evidence to
reject or accept the hypothesis of a single stock in distribution. It is therefore difficult to
determine, whether the existence of genetic variations is local (Canales-Aguirre et al.,
2010). Landings of G. blacodes have been decreasing considerably in Chile. However,
from 2014, fishery has been on the increase with a steep increase during the last two
years. In Chile, according to Contreras et al. (2018) the stock of G. blacodes is at 20%
spawning biomass. The artisanal fishery contributed to 60% of the national landings in
2013, followed the industrial fleet with 40%. In recent years, given the high levels of
recorded catches, the stock is in a state of overexploitation and, due to high fishing

mortalities, is still at risk of overfishing (Wiff et al., 2011).
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Currently, stock depletion of G. blacodes, double increasing of the fish demand and
further upward movement of fish prices are observed. With increased marketing efforts
and population growth, the demand for fish product could be tremendously increased
(Janko, 2014). Types of fishing, fishing methods, socio-economic factors, lack of
facilities and infrastructure, ineffective administration setup, lack of expertise lack of
scientific data are the major fishery management and conservation challenges of G.
blacodes. Thus, effective management setup, regular stakeholders follow-up, and
encouraging the development of aquaculture are very important to sustain the resources
and meet the demand.

Semen analysis is the most important diagnostic tool used to assess fertility (Hwang
et al., 2011). Sperm motility constitutes the basis for evaluating milt and controlling the
ability of sperm to fertilize eggs (Cejko et al., 2013). Sperm motility is a key factor to
determine semen quality and clearly is related to osmolality which having important
relevance in fertilizing capacity and the duration of sperm motility (Sadeghi et al., 2017;
Ingermann et al., 2011). Sperm motility and duration are influenced by various
determinants providing activation of axonemal movement such as pH, temperature,
ions, salinity, and osmolality (Islam & Akhter, 2011; Inanan & Ogretmen, 2015).
Marine fish display higher velocity and duration compared to freshwater species
(Cosson et al., 2008a; Browne et al., 2015). Sperm motility parameters in marine fish
are actually influenced or sensitized to pH, temperature, osmolality, and ions as well as
to dilution (Alavi et al., 2007; Le et al.,, 2011; Browne et al., 2015). Therefore,
determination of good diluent with optimal sperm motility parameters is very important
to increase the fertilizing ability of artificial propagation (Cosson et al., 2008a, 2008b;

Browne et al., 2015).
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Sperm dilution is a main factor in the activation of spermatozoa motility (Alavi et al.,
2007; Le et al., 2011) and the ability to fertilize eggs (Cosson et al., 2008a, 2008b). It
was shown that sperm dilution ratio in activation medium influenced fertilizing ability
throughout changes in sperm motility parameters, such as sperm velocity and sperm
motility percentage (Alavi et al., 2007; Le et al., 2011; Browne et al., 2015). In this
Doctoral Thesis, sperm motility of G. blacodes is initiated on contact with a
hyperosmotic swimming medium under normal conditions (1010 mOsm/kg, pH 8 and
8°C). The longest motility duration (432.48 * 8.89 s) was recorded at 4°C (Chapter II;
Fig. 1, A, B and C). Cosson et al. (2008a) have been reported that pH is one of the key
factors indirectly or directly influencing sperm motility parameters in marine
Conversely, the sperm motility parameters in G. blacodes were activated at pH from 6.0
to 9.0, but the optimal sperm motility parameters were observed at pH 8.0. Sperm
motility parameters also depend on temperature of activation medium (Alavi et al.,
2007; Le et al., 2011; Browne et al., 2015) which tends to be similar to optimal

temperature for growth.

Alavi & Cosson (2005) and Browne et al., (2015) reported optimal sperm motility
temperatures of less than 21 °C in species that are distributed in cold waters. The results
of this study showed that sperm motility parameters were near maximum in an
activation medium of 16°C. Fish sperm motility parameters were also affected by
different osmolalities in the surrounding media (Alavi et al., 2007; Le et al., 2011;
Browne et al., 2015). According to these authors, sperm motility parameters are
stimulated by hypotonic and hypertonicity osmolality in freshwater and marine fish
species, respectively. In G. blacodes, a gradual reduction in motility time was observed

as the osmolality of the swimming medium diminished (Chapter II; Fig. 1C).
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The optimal osmolality for sperm motility parameters has been reported for various fish
species: 900-1100 in halibut, 300-1100 in turbot, 333-645 in tilapia (Cosson et al.,
2008a; Alavi & Cosson 2006). In the case of ions, the sperm motility parameters in
marine fish were also affected and controlled through their sensitivity to ionic
concentrations (Alavi et al., 2007; Le et al., 2011; Browne et al., 2015). It is clear that
sperm motility parameters play an important role in evaluating the fertilizing ability of
fish sperm. . It is possible to increase the fertilizing capacity of the fish sperm by using
suitable activated solutions that can retain sperm motility for a long time. In summary,
spermatozoids activated with medium with a high osmolality medium showed higher
values in motility in comparison with low osmolality medium and the low salinity levels

in the swimming medium affect both motility time and the percentage of motile cells.

Study of sperm function is essential to understand the overall dynamics of
fertilization process in fish (Cabrita et al., 2009). The parameters such as motility,
mitochondrial membrane potential, cytoplasm membrane integrity, and DNA integrity
play an important role in the sperm quality and fertilization capacity (Figueroa et al.,
2016; Rurangwa et al., 2004). According to our results presented in Chapter IlI, G.
blacodes intratesticular spermatozoa shows a low rate of DNA fragmentation 1.175%);
high rate of plasma membrane integrity (83.87%) mitochondrial membrane potential
46.26%) motility (subjective) (88.75%) CASA (23.125%) (Chapter Ill, Table 1).
Additionally, sperm motility showed a positive correlation with mitochondrial
membrane potential and citoplasmatic membrane integrity, whereas, the velocity
straight line and velocity curved-line correlated very well with the mitochondrial
membrane potential and fertility. Moreover, fertility was positively related to sperm

motility and mitochondrial membrane potential.
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Very few studies have correlated sperm motility with fertility. Studies realized by
Figueroa et al. (2014, 2016) in Salmo salar have demonstrated a relationship between

sperm motility and fertlity.

Understanding the morphology and ultrastructure of sperm cells is a prerequisite
to evaluating and establishing methods for analyzing sperm motility, fertilizing ability
and cryopreservation conditions (Psenicka et al., 2007). In addition, allow to determine
the taxonomic and phylogenetic relationships at either inter- or intra-specific levels
(Afzelius, 1978; Jamieson, 1991; Mattei, 1991). Fish spermatozoa are widely divergent
in both morphology and ultrastructure (Ginsburg, 1968; Jamieson, 1991). In this
Doctoral Thesis, morphology and ultrastructure of G. blacodes spermatozoa were
describing through scanning and transmission electron microscopy. Our results showed
that the sperm cell differentiated into a head without acrosome, a midpiece and a simple

flagellar.

The head morphology of G. blacodes sperm is ovoid. In the mid-piece, the axoneme
is separated from the plasma membrane by a cytoplasmic canal. The cytoplasmic canal
is located between the axoneme and mitochondria. In the mid-piece, is possible to
observe 4 or 5 mitochondria arranged in circle form. The axoneme composed the typical
9+2 microtubular doublet structure with two central and nine peripheral doublet
microtubules. The flagellum of G. blacodes has surrounded by a cell membrane that
projected to form two side-fins located on the both sides of the flagellumn. One possible
role of these fin-like flagella could be to contribute to the efficiency of the thrust
generated by waves, by increasing the flagellar surface used for friction on the
surrounding medium. A second role could also be to contribute to the large increase in
the membrane surface, due to the presence of such fins, compared with that of a simple

cylindrical axoneme.
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As the sperm flagellar membrane in fishes has these unusual fin-shaped folds (Cosson et
al., 2000), these significantly increase the membrane surface area, thus contributing to
an apparent membrane excess favoring water exchange, but also can be easily distorted,
eventually leading to blebs on exposure to extreme osmotic situations (Perchec et al.,
1996; Cosson et al., 2000). In addition, comparison of the present results with the
current literature on other teleosts species reveals clear differences, which could be used
to determine phylogenetic and taxonomic. Briefly, the results obtained in this Doctoral
Thesis allow: i) characterizing sperm G. blacodes; ii) controlling some factors that
influence in the sperm quality iii) established a base line for further research and
protocols for artificial reproduction of this species to be developed and optimized; iv)
contributing to productive diversification plans through the development of
biotechnological tools. Finally, we can indicate that the hypothesis of this thesis were

validated according to the main results in this study.

5.1. CONCLUDING REMARKS

According to our results, we can conclude that sperm motility of G. blacodes
intratesticular spermatozoa is initiated by hyperosmotic medium (1010 mOsm/kg, pH 8
and 8°C). Parameters such as pH, temperature and osmolality affect the sperm motility.
Additionally, Sperm motility it correlates positively with the fertility, plasma membrane
integrity, and mitochondrial membrane potential. In addition, our results showed that
fertility it correlates positively plasma membrane integrity, mitochondrial membrane
potential, VCL and VSL. Regarding morphology and ultrastructure, G. blacodes
spermatozoa can be differentiated into three major parts: a ovoid head without an
acrosome, a short mid-piece, and a long flagellum that attribute to the potential

swimming ability.
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The mid-piece of G. blacodes spermatozoa contains 4 or 5 mitochondria. The axoneme
composed the typical 9+2 microtubular doublet. G. blacodes sperm can be categorized

as being of a primitive type.

5.2. FUTURE DIRECTIONS

Aquaculture is continuing to grow and expand worldwide, in Chile, the main
development prospects for aquaculture up to 2030 is the production developments
connected with the diversification process with native species. Aquaculture in Chile is a
promising field with a great capability for expansion and development. Recent
investments in new technologies, fishing vessels, processing plants and skilled human
resources have made the Chilean fishing and aquaculture industries highly competitive
in a global context. Chile is making concerted efforts to manage its fisheries in a
sustainable and appropriate manner. However, future fisheries and aquaculture
developments will require an increased emphasis on sustainability. G. blacodes
occupies a good position in the aquaculture industry and market. G. blacodes fischery
can become an important tool for promoting sustainable development. Nevertheless, its
culture is in the initial stages and requires large research effort to obtain essential
information. Currently, G. blacodes fisheries sector is in an expansion phase in Chile.
However, its overexploitation has meant a significant impact on levels of biomass in
Chile. As a solution to overcome overexploitation, the development of crop technology
to culture is considered a good solution. G. blacodes is a species with an unsatisfied
demand in Chile. One of the strategies to protect the reproductive potential of this
species is to assess the size selectivity of first capture and the size average of sexual

maturity.
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Undoubtedly, future growth for this species should be raised on the basis of
incorporating added value to the extracted species, whose physical production does not
exceed catch volumes in recent years. G. blacodes is a species of very easy upbringing,
it has a low metabolism compared to other fishes. The main challenge for G. blacodes
species will be to optimize and improve the production in captivity of this specie to
reduce the mortality rate by improving live storage conditions from harvest to
destination markets. The culture and catch G. blacodes resources require more attention
in Chile, due to this specie is dwindling in the landings. The egg collection and larval
rearing under the present technology, it allows improving the culture of G. blacodes
resources and the replacement of wild seed stock by artificial fingerling to G. blacodes
farms have firmly been improving in Chile. The development and implementation of a
particular fishery or aquaculture management system has important repercussions in
terms of environmental, economic and social outcomes. Consequently, the Chilean
fishery industry needs to have important modifications in the different stages of its
productive practice, including extraction and processing, as well as in the development
and expansion of aquaculture. The diversification of native species and culture systems
could provide an add economic, social and ecological insurance to aquaculture systems

in Chile.
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In this research we evaluated simple aspects of the sperm biology of Genypterus blacodes, in particular assessing
the effects of pH (6, 7, 8 and 9), temperature (4, 8 and 16 °C) and esmolalities 100% sea water (1010 mOsm/kg,
Control), 75% sea water (774 mOsm/kg, T), 50% sea water (488 mOsm/kg, T,) and distilled water (0 mOsm/
kg, T3)) on the motility of Genypterus blacodes intratesticular spermatozoa.

In addition, we determined the fertilization rate. Our results show that G. blacodes spermatozoa have a sperm
density of 535 + 0.16 x 10” spermatozoa/mL. Sperm motility is initiated on contact with a hyperosmotic
swimming medium under normal conditions (1010 mOsm/kg, pH 8 and 8°C). The longest motility duration
(432.48 + 8.89s) was recorded at 4°C. The maximum percentage of motile cells was recorded at 8°C
(65.66 = 4.95) at osmolality 1010 mOsm/kg, whereas an optimum was observed at pH 8. The fertility rate was
73.9 * 17%. This is the first report on sperm motility of G. blacodes spermatozoa. In conclusion, the results of
this study permit a baseline to be established for further research and protocals for artificial reproduction of this
species to be developed and optimized. In addition, the information gathered in this research will be useful for

developing the biotechnology of Genypterus blacodes.

1. Introeduction

In recent years, the overexploitation of fisheries has resulted in in-
creased aquaculture production. The optimization of the reproductive
performance of broodstock has been essential to obtaining high quality
fry, which is imperative if the aquaculture industry is to produce high
quality fish (Lahnsteiner et al., 2009). Within the order Ophidiiformes,
genus Genypterus (Genypterus Philippi, 1857) contains the most eco-
nomically important species. Three of these are found in Chilean wa-
ters: red cusk-eel (Genypterus chilensis, (Guichenot, 1848)), black cusk-
eel (Genypterus maculatus, (Tschudi, 1846)) and pink cusk-eel (Genyp-
terus blacodes, (Forster, 1801)), with the last being the most econom-
ically important (Canales-Aguirre et al., 2010).

G. blacodes is a benthic-demersal species found in the oceans around
southern Australia, Chilean Patagonia, Brazil, Argentina and New
Zealand in depths from 22 to 1000 m (Young et al., 1984; Francis et al.,
2002; Nyegaard et al., 2004). Adults exhibit a demersal behavior and
they are usually found at depths between 45 and 350 m (Cousseau and

Perrotta, 2000; Nyegaard et al., 2004). The pink cusk-eel fishery is
developed in Chilean waters between Coquimbo (41° and 28’S) and
south of Cape Horn (57° and 00°S) (Ward et al., 2001; Wiff et al., 2007).
The global market for G. blacodes is around 45 thousand tons per year.
Spain is the main destination of G. blacodes exports, accounting for 72%
of frozen shipments, equivalent to 563 t, and 100% of shipping fresh
chilled in 2013. Spain is followed by the United States, Brazil, Russia
and Portugal (Chong et al., 2014). Biological studies of this fish are
scarce and they only mention its taxonomy, stomach contents
(Bahamonde and Zavala, 1981; Renzi, 1986), age and growth para-
meters (Chong and Aguayo, 1990; Wiff et al., 2007), macroscopic and
microscopic structure of the ovary in samples from its Atlantic range,
description of spawning stages from Argentinean waters
(Machinandiarena et al., 1998), regional morphometric variations in
New Zealand (Colman, 1995), and instantaneous rate of natural mor-
tality (Ojeda et al., 1986; Wiff et al., 2007). There is limited information
about the morphological and functional aspects of the reproductive
biology of G. blacodes (Chong, 1993; Paredes and Bravo, 2005; Freijo
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et al., 2009). The reproductive activity of this species occurs in Pata-
gonian coastal waters south of 42°S (Province of Chubut, Argentina),
and the spawning area goes from 41 °S to 45 °S, mainly during summer
(Cousseau and Perrotta, 2000). In Chile, the fecundity of G. blacodes in
captivity is estimated to be between 66,167 and 706,658 oocytes per
female (Paredes and Bravo, 2005).

In the fish, the spermatozoon is immotile in the seminal fluid and its
flagellar activity is only triggered when it comes into contact with water
(Alavi and Cosson, 2005, 2006). Sperm quality has been a focus of re-
search given that it can be used as a biomarker of the status of the male
fish (Chauvaud et al., 1995; Cabrita et al., 2009). Knowledge of sperm
motility is a key tool to determine semen quality during artificial fer-
tilization procedures (Alavi and Cosson, 2005; Hu et al, 2009;
Valdebenito et al., 2009). According to Valdebenito et al. (2016), the
parameters such as temperature, pH and osmolality affect the capacity
and duration of motility in fish spermatozoa. The objective of this study
was to determine the effects of osmolality, temperature and pH on
sperm motility of pink cusk-eel spermatozoa; and also fertilization tests
were conducted. In this study, intratesticular spermatozoa were used
because for this species it is difficult to find wild fully-sexually mature
male individuals; and sexual maturation in captivity has not been yet
reported. The use of intratesticular spermatozoa for in vitro fertilization
is a key tool for breeding this species in captivity and hence would
allow its introduction in aquaculture industry.

2. Materials and methods
2.1. Broodstock

This study was conducted at the Engineering Biotechnology and
Applied Biochemistry Laboratory (LIBBA) and at the Center for
Biotechnology in Reproduction (CEBIOR), Universidad de la Frontera,
Chile, as well as at the Aquaculture Biotechnology Laboratory, Catholic
University of Temuco, Chile. The specimens of G. blacodes were caught
between April and May 2017 in Puerto Montt, Region de Los Lagos,
Chile with average weight of 1.96 = 1.06kg and a total length of
62.5 £ 4.68 cm, respectively.

2.2. Collection of gametes

This study was carried out with intratesticular spermatozoa, which
were collected according to the procedure described by Cabrita et al.
(2005). During transport, the specimens were kept alive. The specimens
of G. blacodes were anesthetized by immersion with AQU[—S' (BAYER
S.A Animal Health-Chile) for a few minutes and then decapitated. Their
testicles were surgically extracted and carefully cleaned with distilled
water, dried and blood remnants were removed. The testis were
transferred individually into an Eppendorf tube on ice and were
transported using oxygenated containers with a constant temperature of
4 °C. The testes were sectioned directly in the Eppendorf tube (on ice)
using a scalpel and collecting the sperm by dripping directly into a
graduated, sterile, dry, disposable plastic container maintained at 4 °C.
In addition, the intratesticular spermatozoa were diluted in StorFish®
(Imv, Technologies, France) medium (dilution 1:1) and centrifuged
twice at 1800 rpm for 5 min. Immediately after collection, sperm mo-
tility and concentration were determined using a phase contrast mi-
croscope (Carl Zeiss, Jena, Germany). Sperm density (number of sper-
matozoa/ml) was determined in six males using a Neubauer
hemocytometer according to the methodology deseribed by Figueroa
etal. (2015) and Merino et al. (2011) for blood cells and spermatozoa at
a dilution of 1pL of sperm in 1200 pL of StorFish® medium (Imv,
Technologies, France).

2.3. Activation solutions

For sperm motility activation, three solutions with different
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proportions of seawater (35 g/L, pH 8) and distilled water were used:
control, seawater 100% (1010 mOsm/kg); T,, seawater 75% (774
mOsm/kg); Ta, seawater 50% (488 mOsm/kg); and Ty, distilled water
(0 mOsm/kg), as suggested by Cosson et al. (2008b).

These activation solutions were assessed at three different tem-
peratures (4°, 8" and 16 °C). The osmolalities used in each activation
solution were determined by a Fiske” Micro-Osmometer, 2010 model
(Germany). The pH of the control (seawater) was adjusted to three pH
units above and below the normal value (8) for seawater (6, 7 and 9) by
adding HCI [1%] and NaOH [1%)] respectively, using a pH-meter model
pH 21. The effect on motility was assessed at ambient temperature of 4,
8 and 16 °C.

2.4. Assessment of sperm motility

Sperm motility was assessed in a cold-room, where temperatures of
4, 8 and 16 °C were used for the experiment. All treatments were as-
sessed by the same person using a Nikon Eclipse E400 microscope
(Japan) at 40 x magnification. Approximately 4 h after the sperm were
obtained, the flagellar activity periods were recorded using a chron-
ometer from the initiation of movement (progressive motility) until the
start of local circular movement (vibratory or stationary movement)
(Groison et al., 2010). To assess the percentage of motile cells, values
from 0 to 100% were used as suggested by Cosson et al. (2008b), on a
scale from 1 to 5: 1 = 0-5%; 2 = 5-25%; 3 = 25-50%; 4 = 50-75%);
5 = 75-100%. The percentage and duration of motility were assessed in
15 aliquots of 1 pL of semen activated in 10 pL of each of the activating
solutions (Control, Ty, T», and Ty) at temperatures of 4, 8 and 16°C as
per Cosson et al., 2010 and Valdebenito et al. (2016) using a Nikon
Eclipse E400 (Tokyo, Japan) microscope at 10x magnification and with
15 repetitions per treatment for osmolality and temperature.

2.5. Fertility

Fertility was evaluated with 4.5mL sperm + 1.5L mass + 500 mL
of seawater. It was mixed well and allowed to keep for 5min, after
which time 1.5L of seawater was added at 12°C. All the fertility tests
were carried out five times with 200 oocytes per replication. The eggs
were incubated in open flow at 10 °C. Fertilization was evaluated by
observation of the first cleavages (segmentation) after 16 h incubation
at 10 °C. Those with segmented blastodiscs were considered fertilized.

2.6. Statistical analysis

The motility results were analyzed with the statistical software
GraphPad Prisma” version 5.0 (GraphPad Software, San Diego CA). A
one-way ANOVA was used for nonparametric samples to analyze the
percentage and duration of motility. Additionally, the analysis of dif-
ferences between the average values of the variables of treatment
groups were compared by applying the Tukey test. The level of sig-
nificance was setat p < 0. 05, n = 15 replicate. The results of the level
of motility are presented as a sample mode.

3. Results
3.1. Spermatological parameters

Table 1 shows the morphometric and spermatological parameters of
pink cusk-eel samples, while Table 2 shows the levels sperm motility.

3.2. Fertility and effects of pH on the duration and level of sperm motility

The rate of sperm motility of G. blacodes intratesticular spermatozoa
and fertilization were expressed as mean + SD. Statistically significant
differences (p < 0.05) were observed in both duration of motility (s)
and percentage of motility between pH 6, 7, 8 and 9. The highest level
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Table 1
Morphometric and spermatological parameters of pink cusk-eel samples (n = 9
males).

Parameters Minimum Maximum Mean SD
Weight (kg) 0.98 4.08 1.96 +1.06
Length (cm) 56 70 62.5 +4.68

Sperm volume (mL) 1.2 25 147 + (.56
Density (x 10%/mL) 5.1 5.6 5.35 +0.16

SD = Standard Deviation.

Table 2

Levels of sperm motility of the pink cusk-eel activated with
solutions at different temperatures and osmolalities: control
(100% seawater), Ty (75% seawater), T (50% seawater) and
T, (distilled water).

Activator (mOSm/kg) Temperature
4°C 8°C 16°C
Control (1010) Level
3 4 3
Treatment Temperature (16 °C)
Level
Ty (774) 3
Ty (488) 2
Ts (0) 0

of motility was recorded at pH 8 (204. 14 + 10.00s and
52.66 = 2.58% of motility) compared to other treatments: pH 6

(168.4 = 11.18s and 38 * 235% of motility) pH 7
(186.64 = 4.31s and 43 = 253% of motility) and pH 9
(167.41 = 8.89s and 37.5 *+ 2.59% of motility), while there was no

significant difference between pH 6 and 9 (Fig. 1 A). The determining
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rate for fertilization was 73.9 = 17%.

3.3. Effects of temperature on the duration and level of sperm motility

The flagellar activity was recorded at 4°C (Control:
432.48 + 8.89s and 40 + 2.67% of motility) comparing to 8°C
(Control: 354.12 + 29.92s and 65.66 + 4.95% of motility) and 16°C
(Control: 167.52 + 18.08 s and 47 = 2.53% of motility), while there
was significant difference in flagellar activity at 16°C (control:
167.52 + 18.08s; T;: 160.06 + 22.57s;T,: 70.14 + 11.165) and T,
distilled water, the motility of which was not observed (Fig. 1B).

3.4. Effects of osmolality on the duration and level of sperm motility

In terms of osmolality, significant differences were found for the
control (354.12. 14 + 29.92s) compared to T; (160.06 + 22.57s)
and T, (70.14 + 11.16s) at 16 °C (Fig. 1C). G. blacodes intratesticular
spermatozoa were only activated on contact with seawater (1010
mOsm/kg), including seawater at lower levels of osmolality (772
mOsm/kg) and (448 mOsm/kg). The G. blacodes spermatozoa were
immotile in the testicle and only began intense flagellar movement on
contact with a hyperosmotic activation medium including seawater at
lower levels of osmolality.

4. Discussion
4.1. Sperm density and motility

Cosson et al. (2008a, b) have reported in marine teleosts with ex-
ternal fertilization the osmolality is the main factor controlling sperm
motility. However, the sperm motility rapidly decrease after activation
therefore progressive movement needed by the sperm to effectively
reach the egg surface is limited. According to sperm duration of moti-
lity, the spermatozoa of G. blacodes can move for up to 354.12s as
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Fig. 1. A) Duration of motility (s) and percentage of motility of pink cusk-eel spermatozoa at different pH (6, 7, 8 and 9), osmolality = 1010 mOsm/kg and
temperature = 16°C. B) Duration of motility (s) and percentage of motility of pink cusk-eel spermatozoa at different temperatures (4, 8 and 16°C), pH = 8 and
osmolality = 1010 mOsm/kg. C) Duration of motility (s) and percentage of motility of pink cusk-eel spermatozoa activated in different salinity conditions, 100% sea
water (1010 mOsm/kg), 75% sea water (774 mOsm/kg), 50% sea water (488mOsm/kg) and distilled water (0 mOsm/kg), pH = 8 and temperature = 16°C. The
values are mean = SD, capital and small letters indicate significant differences in motility (%) and duration of motility, respectively with P < 0.05and N = 15

replicates.
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shown in this study; sperm cells commence any flagellar activity only
when they come into contact with a hyperosmotic medium. Also, the
motility observed in G. blacodes are similar to what has been described
for other marine fish species (Cosson, 2004; Cosson et al., 2008a, 2010;
Valdebenito et al., 2009; Groison et al., 2008, 2010; Effer et al., 2013).
Additionally, duration of motility of other marine species of commercial
importance can be mentioned, including halibut (110-120s), turbot
(6005s), sea bass (50-60s), cod (7-800s) and tuna (140s) (Cosson
et al., 2008a,b).

Although the motilities presented for each of the above species were
not determined under the same experimental conditions, these data
allow us to indicate differences and similarities between the main
marine species of commercial interest. In all these species, the sper-
matozoa are immotile in seminal fluid (Cierezko, 2008; Cosson, 2004;
Cosson et al., 2008b,c) and only commence flagellar activity when they
come into contact with a hyperosmotic medium (Cosson, 2004; Cosson
et al., 2008a,b,c, 2010; Morisawa, 2008). However, the total motility
time will depend on fluctuations in the parameters of the micro-
environment (pH, temperature and osmolality) in which the re-
production of these species occurs (Cosson et al., 2008b; Groison et al.,
2010; Morisawa, 2008).

4.2. Effect of temperature, pH and osmolality on the duration of sperm
motility

In marine teleosts, sperm motility is activated by contact with sea-
water mainly through a positive increase in osmolality, and several
factors are known to affect this process, including temperature (Alavi
and Cosson, 2005, 2006). The effect of temperature on sperm motility
has scarcely been studied in marine and freshwater teleostei (Morisawa,
1994; Valdebenito et al., 2009, 2016). Nevertheless, it has been re-
ported that with a decrease in temperature, flagellar beating frequency
is lower (Billard and Cosson, 1988) and the duration of motility is
longer (Cosson et al., 2008a,b). In this research, our data showed that
the activation medium indicated an optimum at 8 °C 354.12 s (5.9 min)
compared to 4°C 432.48s (7.20min) and 16°C 167.52s (2.79 min),
when G. blacodes spermatozoa were activated with sea water. The
spawning temperature for this species is 10-14°C. The duration of
sperm motility in fish depends on the temperature of the activation
medium (Billard and Cosson, 1988).

According to Alavi and Cosson (2005, 2006), low temperatures re-
duce the intensity of flagellar movement, significantly prolonging mo-
tility, whereas high temperatures increase the intensity of flagellar
movement, reducing the motility time. However, there have been
thorough studies focusing on the specific ions that trigger sperm mo-
tility, such as K*, Ca®* and Mg®* present in seawater and their in-
fluence on sperm motility activation (Cosson, 2004). G. blacodes sper-
matozoa were only activated on contact with seawater (1010 mOsm/
kg), including seawater at lower levels of osmolality (772 mOsm/kg)
and (448 mOsm/kg). However, motility was not found when the semen
was transferred to distilled water (mOsm/kg). Valdebenito and Fig-
ueroa (unpublished data) point out that the maximum mean duration
recorded for G. chilensis was 1346 s in a saline solution (928 mOSm/kg)
and for the black conger eel it was 1470s in saline solution (754
mOsm/kg). Nevertheless, motility in marine fish may occur in a wide
range of osmolalities, for example in Atlantic halibut (Hippoglossus
hippoglossus) it occurs between 900 and 1100 mOsm/kg (Billard et al.,
1995), in Dicentrarchus labrax over 300 mOsm/kg (Chauvaud et al.,
1995; Dreanno et al., 1999), and in (Sarathoredon melanotheron, (Riip-
pell, 1852)) between 300 and 970 mOsm/kg (Legendre et al., 2008). A
recent study conducted by Valdebenito et al. (2016) demonstrated that
osmolality of the activation medium (Control = 815 mOsm/ kg;
T; = 716 mOsm/kg; T, = 590 mOsm/kg) influenced the sperm motility
of Patagonian blenny (Eleginops maclovinus), a species that lives in the
same areas as G. blacodes. The highest flagellar activity (percentage of
motile sperm and duration) was shown at pH = 8. This is similar to
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what Effer et al. (2013) described for M. australis, a fish that also lives in
the same areas as G. blacodes. The pH of the activation solution affects
sperm motility to a low extent (Cosson, 2004).

It is generally accepted that the pH or ions present in the activation
solution polarize the cell membrane and stimulate the motility of fish
spermatozoa by changing the Na*/K* permeability (Morisawa and
Morisawa, 1988; Boitano and Omoto, 1991). The pH of the intemal
cytoplasm is one of the most important factors that affect sperm mo-
tility (Woolsey and Ingermann, 2003). The alkaline nature (pH = 8) of
the activation solution seems to be the most suitable for species such as
turbot (Chauvaud et al., 1995), halibut (Hippoglossus stenolepis) (Billard
et al., 1993). According to Cosson et al. (2008b,c), the pH may reduce
or prolong motility, but it is not the principal parameter in motility
initiation, despite intracellular pH playing a key role in sperm ma-
turation in vivo (Cierezko, 2008).

In conclusion, in the current study, we showed that the motility of
G. blacodes intratesticular spermatozoa is initiated by hyperosmotic
medium. Varying temperature and osmolality of the activation medium
demonstrated an optimal effect on sperm motility, whereas the pH of
the activation solution affected sperm motility to a lesser extent. The
fertilization rate was high at 73.9%; however, more tests need to be
done to improve these results. Finally, considering the importance of
fish reproduction in captivity and in the wild, it is advisable to deepen
research in cellular aspects, thus providing useful information for the
elaboration of means of cultivation and other inputs used in the man-
agement of gametes of this species.
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Sperm motility is considered as a key factor allowing determination of semen
quality and predicts fertilizing capacity. In many fish species, the spermatozoa are
immotile in the testes and seminal plasma, and motility is induced when they are
released in the aqueous environment. Initiation and activation of sperm motility
are prerequisite processes for the contact and fusion of male and female gametes
Received 31 July 2016; accepted 11 February at fertilization. Many proteins are involved in the activation of sperm motility in
2017, many species. Cell signalling for the initiation of sperm motility in the salmonid
fish has drawn much attention during the last two decades. In some species, pro-
tein phosphorylation process was shown to be involved in flagellar motility regu-
lation. Hyperpolarization of the sperm membrane induces synthesis of cAMP
(cyclic AMP), which triggers further cell signalling processes, such as cAMP-
dependent protein phosphorylation that finally initiates sperm motility in salmo-
nid fish. lons such as Na”, K" and Ca®" play also an important role in the activa-
tion of sperm motility in many species, more specifically in salmonids. Salmonid
fish sperm motility can be suppressed by millimolar concentrations of extracellu-
lar K7, and dilution of K* upon spawning is enough to trigger the cAMP-depen-
dent signalling cascade leading to motility initiation. This review aims to
update the present knowledge about the roles of ions and protein phosphoryla-
tion process in the sperm motility activation in salmonids.

Key words: cell signalling, fish spermatozoa, motility initiation, protein phosphorylation, sperm
motility.

components such as nitric oxide or CO, affect the percent-

Introduction age and duration of fish sperm motility (Inaba 2003; Cos-

Sperm motility is a key prerequisite determining the quality
and fertilizing ability of semen. Motility is a minimal con-
dition that enables the spermatozoon to reach the oocyte to
fertilize it successfully and has been considered to be one of
the principal variables of sperm quality in fish (Rurangwa
et al. 2004) as it is an integrated quality variable, combin-
ing various cell components responsible for the activation
and sustainability of the motility and progressive move-
ment of the spermatozoon (Bobe & Labbé 2010). The
osmolality and ion content (K7, Na™, Ca’™, Mg2+) of the
aquatic medium are central factors in activating motility
(Figueroa er al. 2014). Extracellular factors such as temper-
ature, pH, dilution and gaseous

osmotic pressure,

© 2017 Wiley Publishing Asia Pty Ltd

son 2004; Wilson-Leedy & Ingermann 2011; Barman et al.
2013; Dzyuba & Cosson 2014). The mechanisms involved
in activating sperm motility are considered of vital impor-
tance in regulating processes such as artificial fertilization
and cryopreservation. In fish with external fertilization, the
activation of sperm motility is triggered by various factors
such as ionic changes (K" and Ca®"), decrease in osmolality
in freshwater species, increase in osmolality in saltwater
species (Cosson 2010; Dzyuba & Cosson 2014) or a combi-
nation of some of these factors. Hypotonic exposure after
dilution into freshwater is the triggering signal in non-sal-
monid freshwater fish such as carp (Krasznai er al. 2003;
Morita et al. 2003). These changes occur when the
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spermatozoa leave the seminal fluid (osmolarity ranging
300 mOsmol kg ') and come into contact with external
water (osmolarity ranging 0 mOsmol kg™ "), following
their ejaculation during the reproduction process (Cosson
2012). In salmonids, the inhibition of motility in semen is
mainly controlled by the concentration of K* ion, the most
important factor for initiation of sperm motility (Alavi
et al. 2004). In the signalling cascade that regulates sperm
motility, the best characterized factors are cAMP and Ca™*
(Walczak & Nelson 1994): cAMP-dependent phosphoryla-
tions of axonemal proteins have been reported to regulate
the motility of sperm in salmonid fish (Morisawa & Okuno
1982). In teleost fish, the phosphorylation and dephospho-
rylation processes play an important role in the mechanism
of spermatozoa motility activation (Morita ef al. 2006; Zilli
et al. 2008). For sperm initiation, motility activation and
hyperactivation, cAMP-dependent protein phosphorylation
plays a role important triggering in many organisms
including sea urchin, salmonid fish and mammals (Zilli
et al. 2016). In salmonids, a cAMP-dependent protein
phosphorylation is induced by membrane hyperpolariza-
tion as a result of K” efflux and Ca®" influx that triggers cell
signalling for initiation of sperm motility (Morita et al.
2005). The results of several studies suggest that protein
phosphorylation/dephosphorylation events are involved in
sperm motility activation in many fish species having either
internal or external mode of fertilization (Zilli et al. 2016).

Some membrane proteins are also involved in the sperm
motility initiation in fish, in relation to osmoregulation
(Cerdd & Finn 2010; Chauvigné ef al. 2013). The analysis
of protein phosphorylation within intact cells may repre-
sent with best accuracy the status of specific signalling net-
works. Regulation of sperm motility has been linked to
cyclic adenosine monophosphate (cAMP) signalling path-
ways in several animal species, including mammals (Tash &
Bracho 1994), salmonid fish (Morisawa & Okuno 1982),
sparid seawater teleosts (Zilli et al. 2008), tilapia (Morita
et al. 2003) and even invertebrates such as sea urchins (Bra-
cho et al. 1998) or ascidians (Nomura et al. 2000). In sal-
monid fish sperm, the cAMP-dependent phosphorylation
(by protein kinase A) of axonemal proteins is essential for
the initiation of sperm motility (Ikegami et al. 2010).

Inhibition and activation of sperm motility in
Salmonidae

Spermatozoa are immobile in fish testis and also in seminal
plasma in many species (Muller ef al. 2014). The seminal
plasma analysis includes inorganic constituents (Na®, K',
Ca®" and Mg*") involved in the process of inhibition or
activation of sperm motility in most species. In salmonid
fish, transmembrane cell signalling for the initiation of
sperm motility is controlled by the changes under

environmental ionic conditions at spawning from the male
reproductive tract to the spawning ground, which is fresh-
water in the external fertilization species (Kho er al. 2005).
In fish with external fertilization, the activation of sperm
motility is triggered by ionic changes (K* and Ca®") in syn-
ergy with reduced osmolality in freshwater species and aug-
mented osmolality in saltwater species (Cosson 2010;
Dzyuba & Cosson 2014). In salmonids, a decrease in envi-
ronmental K* concentration causes K' efflux through
specific membrane channels, leading to membrane hyper-
polarization, which, in turn, determines the Ca’" influx by
calcium channels (Fig. 1) (Alavi & Cosson 2006; Figueroa
et al. 2015 modified). The response of sperm cells of differ-
ent fish species to activation solutions may be different
because of seminal plasma Ca®* and K' concentration
changes among species. However, the decrease in extracel-
lular K* in Salmonidae is the sperm motility activator
(Morisawa & Suzuki 1980). Generally, fish spermatozoa
present a simplified structure as compared to mammal
sperm (Cosson 2008). In freshwater spawning fish, sperma-
tozoa experience a hypo-osmotic change, that is a transfer
into a medium with lower osmolality, as they are released
from the seminal plasma into freshwater, a medium where
their motility may last less than two minutes after activa-
tion (Alavi & Cosson 2005; Gasparini et al. 2010). Again,
the link between cAMP increase and motility initiation at
the axoneme level was mainly investigated in Salmonidae
(Jin et al. 1994). The cAMP and Ca’", as second messen-
gers, play key roles in the initiation of sperm motility in fish
(Zilli ef al. 2008). The Ca’" ion concentration regulates
sperm motility apparently by acting as a cofactor of protein
kinases or phosphatases (Tash er al 1988). In some fish
species, protein phosphorylation/dephosphorylation is
involved in flagellar motility regulation (Zilli et al. 2009).
Dilution of external K induces an intracellular K efflux
and an intracellular Ca’* ion concentration increases
(Cosson et al. 1989).

Effects of ions on sperm motility in Salmonidae
(K* and Ca?")

K" ion

The intracellular signalling for the activation of sperm
motility in teleosts has been well investigated in salmonid
fish (Kho er al. 2005). Motility is initiated by a decrease in
potassium ions (K*) concentration in salmonid fish sur-
rounding the spawned spermatozoa, when they are released
into freshwater, due to dilution of semen in solutions con-
taining low K' concentration. Dilution media containing
K" concentrations that are elevated in relation to the ionic
composition and osmotic pressure of the seminal plasma
eliminate the initiation of sperm motility in salmonids (Bil-
lard et al. 1995; Kho et al. 2001; He & Woods 2003).
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Figure 1 Model of sperm motility activation in salmonids. The spermatozoa are immobile in the seminal fluid (testicle) because SF is an iso-osmotic
medium and due to the presence of specific proteins (SPF). Motility activation occurs (aquatic medium) at a low potassium concentration in the case
of salmonids and in other species in response to a reduction in osmolarity (most other freshwater species). Change in osmolality of the external milieu
would lead to membrane polarization changes mainly because of variation in the internal concentration of K*, Ca®* and a cydic AMP (cAMP)-inde-
pendent mechanism for activation of sperm maotility. In salmonid fish, sperm motility is suppressed by high seminal K*. A decrease in K* concentration
surrounding spawned sperm in freshwater causes K* efflux, through the K* channel, resulting in hyperpolarization of the plasma membrane of the
sperm flagellum. This increase in membrane potential could directly activate adenylyl cyclase, which provokes an increase in intracellular cAMP con-
centration. Increased intracellular Ca®* may also activate this enzyme in cooperation with membrane hyperpolarization. The ATP content becomes
lower because the renewal by mitochondrial phosphorylation is too slow. Following these stages in the process, cAMP activates protein kinase A
(PKA), resulting in activation of tyrosine kinase and phosphorylation that triggers a final step leading to the initiation of sperm motility (Alavi & Cosson

2006; Figueroa et al. 2015 modified).

Woolsey et al. (2006) report the important influence of the
ionic composition of the external environment on the
sperm motility and how ion channels are essential elements
for this cellular process. The effect of K on sperm motility
in other teleost fish is less clear, but it has been determined
that it does not inhibit flagellar motility in some species
(Morisawa 1994). Cosson ef al. (1999) reported that, in
trout, monovalent ions such as Na* and bivalent as Ca™
Sr**, Ba®* and Mg”" reduce the inhibitory effect of K* and
bivalent cations are more effective than monovalent. In
addition, it has been reported that the inhibition by K™ ions
is mainly regulated by Ca*" ions, possibly due to simultane-
ous flow of Ca®" and K™ (Cosson et al. 1999); the output of
K" favours the opening of Ca>* channels and the income of
the same towards the inside of the cell; the entering Ca’"
favours the release of stored intracellular Ca®>* and modifies
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the pH; (intracellular pH) that represents the first signal,
independent of the cAMP concentration for the start of the
mobility in carp (Krasznai et al. 2000, 2003). Currently, it
is known that the presence of Ca®* and cAMP is important
for sperm motility initiation in salmonids to counteract the
inhibitory effect of K* (Cosson 2008). The initiation of
sperm motility is inhibited in media containing 20—40 mwm
of K” ions, concentrations that are normally present in the
seminal plasma (Scheuring 1924; Turdakova 1970; Mori-
sawa & Suzuki 1980; Baynes er al. 1981; Cosson erf al.
1989). The inhibitory K concentration for sperm activa-
tion has been reported between 0.1 and 2 mum in salmonids
and between 10 and 40 mwm in different carp species
(Billard et al. 1987).

Potassium ions also inhibit motility at very low concen-
trations (in the range of 0.01 mm) in paddlefish and
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shovelnose sturgeon spermatozoa (Cosson & Linhart 1996;
Cosson ef al. 2000). A K* concentration at 20—40 mm (Bil-
lard er al. 1987; Cosson er al. 1989) completely suppresses
sperm motility in the rainbow trout. The inhibition of
motility in salmonids is mainly due to K* ions. In other
words, membrane hyperpolarization caused directly by
transmembrane K* efflux is the first trigger for initiating
sperm motility in salmonid fish. A similar role of potassium
ions is also occurring in chondrostean fish (sturgeons); in
those species, K* ion inhibition of motility can be bypassed
by a hyperosmotic shock (Prokopchuk et al. 2016).

2
Ion Ca™" as second messenger

The Ca®” ions play important roles in the control of the cil-
iary/flagellar activity, and it is a ubiquitous intracellular
messenger, which encodes information by temporal and
spatial patterns of concentration. In spermatozoa, Ca®™
plays a key role in the initiation of sperm motility. Experi-
mental evidence suggests that spermatozoa possess sophis-
ticated mechanisms for the regulation of cytoplasmic Ca*"
concentration and the generation of complex Ca" signals
(Cosson et al. 1989; Krasznai ef al. 2000). An increase of
Ca®" probably activates the adenylyl cyclase (AC) leading
to a cAMP-dependent protein phosphorylation that in turn
activates axoneme. The AC/cAMP pathway plays an impor-
tant role in sperm motility initiation in mammals (Nolan
et al. 2004), amphibians (O’Briena ef al. 2011) and fish
(Zilli et al. 2008). The Ca’* apparently regulates sperm
motility by acting as a cofactor of protein kinases or phos-
phatases (Tash er al. 1988).

Calcium ions interact with an axoneme-located calmod-
ulin (CaM) determining the activation of a Ca’*/CaM-
dependent protein phosphorylation that in turn triggers
sperm motility (Dymek & Smith 2007). Intracellular cAMP
concentration controls the net level of phosphorylation of
certain specific proteins, especially protein kinase A (PKA)
(Leclerc et al. 1996) that directly leads to initiation of axo-
neme movement in mammals. Calcium increased cAMP
through activation of adenylyl cyclase in the spermatozoa
of sea urchins and salmonid fish (Cook et al. 1994). Both
adenylate cyclase activity and the cAMP concentration
increase at motility initiation in intact trout sperm (Mori-
sawa & Ishida 1987). The addition of a minimal concentra-
tion of cAMP is necessary for reactivating the
demembranated trout spermatozoa (Morisawa & Okuno
1982), and cAMP must be permanently present to sustain
axonemal motility (Cosson ef al. 1995); the same authors
also show in this paper that cAMP and ATP act synergesti-
cally. In salmonid fish, a transient increase in [Ca®"]; occurs
due to the release of Ca’" from intracellular stores (Boitano
& Omoto 1992). Three different mechanisms of action have
been proposed for physiological roles of Ca®": (i) Ca®"

would act directly on the axonemal structures in case of sea
bass and tuna (Cosson er al. 2008b); (ii) Ca™* regulates
Ca”*/calmodulin-dependent protein phosphorylation that,
in turn, activates the axoneme (e.g. in puffer fish or seawa-
ter-acclimated eurvyhaline tilapia Oreochromis mossambicus)
(Krasznai et al. 2003; Morita et al 2004); (iii) Ca’" leads
to a cAMP-dependent protein phosphorylation that acti-
vates axoneme in gilthead sea bream and striped sea bream
(Zilli et al. 2008). Calcium ions have different effects on the
flagellum: (i) it determines its activation to start motility;
(ii) it changes the flagellar beating pattern; (iii) it modifies
spermatozoa velocity (Dzyuba et al. 2013).

Both pathways (cAMP/PKA and calcium/calmodulin/
CaMK) are upstream regulators of AMP-activated kinase
(AMPK) that play a role in mammal sperm motility regula-
tion (Hurtado de Llera ef al. 2014). In carp and sturgeon
spermatozoa, recent results show that PKA and PKC are
involved in the phosphorylation of several sperm proteins
that are implicated in the regulation of the motility period
(Gazo et al. 2015). Furthermore, in the euryhaline tilapia
Sarotherodon melanotheron heudelotii the sensitivity to
external Ca®” ions concentration is adapted to the environ-
mental (freshwater, marine or hypersaline) conditions of
the fish (Legendre et al. 2016).

Motility signalling pathways

In spermatozoa of externally fertilizing fish species, sperm
motility is one of the most important viability parameters
and the major ATP-utilizing process (Cosson 2004, 2008).
Numerous studies suggest that the characteristics of motil-
ity of fish spermatozoa are related to their fertilizing capac-
ity (Rhemrev er al. 2001). Motility of spermatozoa is
sustained by hydrolysis of ATP catalysed by dynein ATPase,
which is coupled with sliding of adjacent microtubules
leading to the generation of flagella beating (Gibbons 1968,
1981). Motility activation of fish spermatozoa is a fraction
of a second lasting process, making studies biochemical
processes are necessary to understand that occur in sperm
motility and during fertilization (Kowalski et al. 2003
Wojtczak et al. 2003; Cosson 2004). Spermatozoa motility
signalling is a complex and highly orchestrated process that
has not been only partially studied in fish (Alavi ef al. 2008;
Morisawa 2008; Cosson 2010). The extracellular factors
controlling sperm modtility (osmolality, ions, sperm-activat-
ing peptides and chemoattractants) act on the flagellar
motile apparatus, the axoneme, through signal transduc-
tion across the plasma membrane (Alavi & Cosson 2006;
Cosson 2010, 2016; Dzyuba & Cosson 2014). In salmonid
fish spermatozoa, the cAMP-dependent phosphorylation
(by protein kinase A) of axonemal proteins is essential for
the initiation of sperm motility (Inaba er al. 1998). The
cAMP-independent initiation of flagellar motility in sperm
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has also been observed in puffer fish (Morisawa 1994),
striped bass (Shuyang er al. 2004) and carp (Cosson & Gag-
non 1988). Second messengers (cAMP and Ca’") determine
the sperm motility initiation modifying dynein-mediated
sliding of the axonemal outer-doublet microtubules
through protein phosphorylation in different species, such
as mammals (Lindemann & Kanous 1989), rainbow trout,
chum salmon, sea urchin (Inaba ef al. 1999), sea bass (Zilli
et al. 2012) and tunicate (Nomura ef al. 2000). In some
freshwater teleosts, the flagellar axoneme is regulated by
calcium/calmodulin-dependent protein phosphorylation
(Krasznai et al. 2000; Morita et al. 2006).

Protein phosphorylation in the activation of sperm
motility

The final event in the mechanism of sperm motility initia-
tion is the transmission of the exogenous signals to the axo-
neme (Dzyuba & Cosson 2014; Zilli et al. 2016). In some
fish species, protein phosphorylation/dephosphorylation is
involved in flagellar motility regulation (Zilli et al. 2012).
The cAMP-dependent phosphorylation of flagellar proteins
is required for the initiation and maintenance of sperm
motility. The major targets of the protein phosphorylation/
dephosphorylation, which cause the activation of sperm
motility, are structural components of inner and outer
dynein arms, kinases and phosphatases anchored in the
axoneme and the radial spoke proteins (Porter & Sale 2000;
Yanga & Tierscha 2009). Kinases and phosphatases are
required for local control of motor activity (Aparicio ef al.
2007), and radial spoke proteins regulate inner arm dynein
by phosphorylation/dephosphorylation.

Recent studies demonstrated that different factors could
affect phosphorylation of sperm proteins after motility acti-
vation in fish (Zilli et al 2011; Li et al. 2013; Gazo et al.
2015). In puffer fish and tilapia sperm, the activity of the
flagellar axoneme is regulated by Ca®*/calmodulin-depen-
dent protein phosphorylation, whereas in gilthead sea
bream and striped sea bream, it is regulated by cAMP-
dependent protein phosphorylation (Zilli ef al. 2009
Dzyuba ef al. 2010). Protein phosphorylation occurs dur-
ing initiation and activation of sperm motility in salmonid
fish, echinoderms and mammals (Nomura et al. 2000). The
motility of spermatozoa is initiated and maintained by the
hydrolysis of ATP catalysed by dynein ATPase, which is
coupled with sliding of adjacent microtubules, leading to
the generation of flagellar beating (Gibbons 1981; Okamura
et al. 1985; Bracho et al. 1998). Dyneins are ATPases cap-
able of transducing chemical energy derived from the
hydrolysis of ATP into the mechanical force necessary for
cilia and flagella bending (King ef al. 1986). Following
phosphorylation, the dynein ATPase is activated and
microtubule sliding occurs. A prerequisite of spermatozoa
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motility is that hydrolysis of ATP be catalysed by dynein
ATPase, which liberates chemical energy and is coupled
with mechanical sliding of adjacent microtubules (Tash
1989).

Proteins involved in sperm motility activation in
different fish

Furthermore, various glycoproteins have been reported to
be motility activators (Figueroa et al. 2015). Billard (1983)
found that the sperm dilution rate could have an influence
on the fertilizing ability of salmonid spermatozoa and sug-
gested that possibly, the presence of some proteins in semi-
nal plasma may play a role in the sperm protection
mechanisms. Moreover, it was demonstrated that after frac-
tionation of seminal plasma proteins, several fractions were
found to be the most effective for saving sperm longevity
(Lahnsteiner 2007).

While multiple forms of proteolytic enzymes exist in
seminal plasma of teleosts and differ among fish families
and species, the exact role of these enzymes remains poorly
understood (Table 1). It was also suggested that transfer-
rins and lipoproteins found in fish seminal plasma partici-
pate in the protection of spermatozoa during storage in the
spermatic duct, together with proteinase inhibitors (Cier-
eszko 2008).

Axoneme dynein ATPase activation

Phosphorylation of axonemal dynein appears to be a criti-
cal regulatory point in the initiation of flagellar motility.
Following this phosphorylation step, the dynein ATPase is
activated and microtubule sliding occurs. Right after,
dephosphorylation of dynein by the calmodulin-dependent
protein phosphatase calcineurin occurs and reverses this
process. This requires that phosphorylation and dephos-
phorylation are acting in an asynchronous manner along
the length of the axoneme (Luconi ef al. 2011). In marine
fish, the activation of axoneme is achieved by different
mechanisms (Zilli ef al. 2012). In sea bass and tuna sper-
matozoa, the key factor to start the beating of the flagella is
the variation of intracellular ionic strength (Alavi & Cosson
2006; Cosson ef al. 2008a). In herring sperm, increasing
concentration of calcium ions is the main factor that deter-
mines the activation of the axoneme. In this case, a sperm
motility initiation factor (SMIF) liberated by the egg
induces calcium influx by opening the voltage-gated cal-
cium channels and activating a reverse Na*/Ca™* exchange
(Vines et al. 2002).

The presence of SMIF provokes an approximately four-
fold increase in the sperm intracellular Ca®* concentration
that acts on the axoneme and induces its motility (Cherr
et al. 2008). The major targets of protein phosphorylation/
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Table 1 Proteins involved in sperm motility activation and in seminal plasma in different fish

Proteins

Species

Functions/roles

References

Metalloproteinase; serine
proteases

Acid phosphatase; Alkaline
phosphatase; f-o-glucuronidase
Inhibitor Il «1-Antiproteinase

Transferrin

Lipoproteins

Malate dehydrogenase; lactate
dehydrogenase (LDH); aspartate
aminotransferase; adenosine
triphosphatase

Ca’*-binding protein

Ca’*/CaM-dependent protein
kinase IV

A-kinase anchor proteins

Acetyl-CoA synthetase

Novel protein similar to
phosphatase and actin regulator
3 of Danio rerio

Myotubularin-related protein 1

Salmonid; Cyprinid; Percid

Salmonid; Cyprinid

Oncorhynchus mykiss,
Cyprinus carpio
C. carpio

0. mykiss

Salmonid; Cyprinid;

Eleginus lucis,

Perca flavescens

Oreochromis mossambicus

0. mossambicus

Sparus aurata

5. aurata

5. aurata

Lithognathus mormyrus

Can regulate spermatogenesis by activation of
proenzymes and prohormones, stimulation of
sperm motility and metabolism and removal of
immature and damaged spermatozoa at the
end of spawning

Responsible for elimination of degenerating
spermatozoa at the end of spawning

May participate in protection of spermatozoa
from proteolytic attack

May protect spermatozoa against microbes,
oxidative and heavy metal toxicity

Interaction with sperm plasma membranes to
maintain optimal lipid composition during
storage in the spermatic duct

Enzymes involved in metabolism

Regulates the flagellar motility in a calcium-
dependent manner by modifying both the
sliding velocity and flagellar waveform

Localized along the flagellum and sleeve
structure, that is involved in the activation and
regulation of sperm flagellar

AKAP as a key requlator of sperm motility has
been already established. Have the function of
binding to the regulatory subunits (Rl and RIl)

This enzyme could be activated in motile sperm
to increase the level of ATP, which is necessary
for flagellar movement

May be a protein phosphatase inhibitor

Belongs to the protein tyrosine phosphatase
family, and DYRK3 is a protein kinase and
regulated kinase family

Kowalski et al. (2003)

Lahnsteiner et al. (1998)

Mak et al. (2004) and

Wojtczak et al (2007)
Wojtczak et al. (2007)

Loir et af. (1990)

Lahnsteiner et al. (1998)

Morita et al (2009)

Morita et al (2006)

Zilli et al (2008)

Zilli et al. (2008)

Zilli et al (2008)

Zilli et al. (2008)

dephosphorylation causing the activation of sperm motility
are structural components of dynein arms (inner and
outer), kinases and phosphatases anchored in the axoneme
and in the radial spoke proteins (Yang et al. 2001). Kinases
and phosphatases are required for local control of motor
activity (Aparicio ef al. 2007), and radial spoke proteins
regulate inner arm dynein by phosphorylation/dephospho-
rylation. Dynein constitutes one of the major families of
molecular motors that produce directed movement along
axonemal microtubules (Dzyuba & Cosson 2014). The ATP
is probably the main source of energy for sperm motility
(Ingermann er al. 2003; Zilli et al. 2004; Cosson 2012). In
fish species such as trout (Christen et al. 1987), carp
(Perchec et al. 1995), catfish (Linhart ef al. 2004), sea bass
(Dreanno et al. 1999), sturgeon (Billard et al. 1999) or tur-
bot (Dreanno ef al. 1999), ATP stores showed shifting
down to values reaching one-third to one-tenth of the

initial content during intensive motility phase. Neverthe-
less, it is worth to remark that final ATP concentration at
the end of a motility phase is usually high enough to fulfil
the dynein ATPase requirements (Cosson 2004). Motility
of spermatozoa is sustained by ATP hydrolysis catalysed by
dynein ATPases, which are coupled with sliding of adjacent
microtubules leading to the generation of flagellar beating.
Intracellular ATP is the main energy source in spermato-
z0a, but it also acts as a substrate for the generation of the
second messenger cCAMP by adenylyl cyclases and serves as
a phosphate donor for protein phosphorylation (Miki er al.
2004; Cao et al. 2006). The immediate source of mechani-
cal energy for motility is hydrolysis of ATP catalysed by
dynein ATPase.

The production of ATP is insured by the sperm mito-
chondria, in addition to a biochemical shuttle present in a
flagellum that involves other molecules with high-energy
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bonds and are in charge of distributing homogenously the
ATP concentration along the flagellar compartment
(Tombes et al. 1987; Saudrais er al. 1998). Regulative
aspects of flagella activity, which are under control of ATP-
related molecules such as cyclic AMP (cAMP) in sperm of
many species, will also be reviewed. It has been shown for
freshwater fish that during sperm movement under hypo-
tonic conditions, a reduction in the ATP concentration and
a rise in the sperm cell volume are observed due to water
penetration into the spermatozoon due to the highly hypo-
tonic environment (Dzyuba ef al. 2010; Bondarenko et al.
2013). Dyneins are microtubule-dependent force-generat-
ing enzymes and constitute one of the major families of
molecular motors producing directed movement along
axonemal microtubules (Mocz & Gibbons 2001). Dyneins
are ATPases capable of transducing chemical energy
derived from the hydrolysis of ATP into the mechanical
force necessary for bending of cilia and flagella (King er al.
1986). For motility activation, the activity of dynein, the
molecular motor, has to be initiated and regulated to pro-
duce the coordinated sliding of microtubules in the axo-
neme (Cosson & Prokopchuk 2014; Zilli ef al. 2016). The
dynein ATPase of the axoneme utilizes ATP to bring about
movement of the flagellum (Suarez & Ho 2003). Flagellar
dynein activity is regulated by phosphorylation. The dynein
ATPases belong to a family of molecular motors responsi-
ble for diverse cellular functions, not only axonemal beat-
ing but retrograde
transport of organelles, assembly and function of the Golgi
and mitotic apparatus (Brokaw 2009). It has been revealed
that dynein is one of the major targets of cAMP-dependent
protein phosphorylation (Alavi er al. 2008; Lahnsteiner
et al. 2010).

also  includes microtubule-based

Conclusions

Motility activation of spermatozoa is a complex and highly
organized process especially for salmonids. The ions such
as Na®, K" and Ca" play an important role in the sperm
motility activation. Various studies have shown that phos-
phorylation of sperm proteins is an important aspect of
capacitation and is associated with hyperactivated motility
in mammals, and extensive research has also started to elu-
cidate various pathways involved in protein phosphoryla-
tion during sperm capacitation. However, the role of
protein phosphorylation regulation in sperm motility and
the understanding of the links between the different phos-
phorylated proteins have not been studied in details in fish,
yet. Some species, such as puffer fish, tilapia, gilthead sea
bream and striped sea bream protein phosphorylation/de-
phosphorylation, have shown to be involved in flagellar
motility regulation. The exact role of protein phosphoryla-
tions in the mechanisms that sustain sperm motility

Reviews in Aquaculture (2017 0, 1-11
® 2017 Wiley Publishing Asia Pty Ltd

Salmonid sperm motility activation

remains unclear, and the topic requires further comprehen-
sive interspecific studies.
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