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Summary 
 

It is expected that climate change will modify crop yield with important consequences on 

food security in the next 100 years. An important step for mitigating these impacts is to 

project crop responses under the expected climate change conditions. This can be 

conducted by using climate models that simulate the future atmospheric status, based on 

greenhouse gas concentrations. These simulations have been summarized by the 

International Panel of Climate Change (IPCC), providing climate projections considering 

several scenarios for crop modeling. T his projected climate databases have been used as 

input in crop models to project yield responses under climate change conditions. 

Climate and crop models show important uncertainties that need to be addressed to 

achieve reliable projections. One of their main limitations is the difference between large 

scale climate model outputs (~300 km), and the climate input required by crop simulation 

models (< 1 km). Downscaling techniques have been developed for solving this problem. 

This technique has been used for generating mesoscale climate datasets (~ 25-50 km) 

commonly used in climate change and crop response researches. However, there are few 

studies evaluating the scale effect on the crop model reliability. In fact, optimal climate grid 

cell size (i.e. the maximal pixel representing the spatial crop variability) is an unsolved 

problem.  

A dynamical downscaling (PRECIS, Providing Regional Climates for Impact 

Studies) from an Atmospheric and Oceanic Global Climate Model (HadCM3), 

Departamento de Geofísica, Universidad de Chile (DGF) computed a mesoscale (25 km) 

database for A2 (850 ppm of CO2 eq and 3°C forth year 2100), B2 (621 ppm of CO2 eq, 

and 1°C for the year 2100) and baseline (1961-1991) from IPCC scenarios along all the 

Chilean continental territory. This database (hereafter DGF-PRECIS) was created for 

developing climate change public policies. Although it is an important progress for 

mitigating climate change impact, it has not been compared with insitu data.  

 In this thesis, we performed high resolution simulations (1 km) for winter wheat 

(Triticum aestivum L) in Araucanía region (37°- 40° S and 71°-74° W) under the most 

severe IPCC A2 scenario. To achieve this, we first validate DGF-PRECIS by comparing the 

baseline projection (1961-1991) with insitu data (56 metrorological stations) and latter 

DGF-PRECIS database was corrected and downscaled. CERES-DSSAT model was used 

with downscaled dataset for projecting the crop response. Additionally, we propose an 

optimal climate grid cell size based on downscaling and crop simulation, where complex 

and flat topography zones were studied.  

In Chapter 1, we give a General Introduction where the problem is addressed. In 

Chapter 2 we show a theoretical framework of the current knowledge of climate change 

impact by crop simulation models using climate models as input data (hereafter climate-

crop-models, CCM). The broad implication of our findings is that theoretical downscaling 
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techniques can be proposed for correcting differences of scales between CCM and high 

resolution crop models (< 1 km grid).   

In Chapter 3, we compare the baseline DGF-PRECIS rainfall projection with in situ 

rainfall records (56 meteorological stations) located in Araucanía region to correct and 

validate the climate projection (A2 and B2 scenarios) at 25 km grid. Since one of the main 

climate drivers in Chile is ENSO, we also asses these effects comparing DGF-PRECIS 

database with the time span where the phenomenon occurs. The result shows that DGF-

PRECIS underestimates the precipitation rate during the La Niña and El Niño phases. In the 

the neutral phase of ENSO, it presents a more extreme cycle (dryer summer and rainier 

winter). Based on these results, we corrected DGF-PRECIS with empirical coefficients for 

southern regions. To understand this error, we compare the DGF-PRECIS database with 

whole continental Chilean territory rainfall. However, there is an important lack of 

historical records (1961-1991) to perform this validation. To increase the rainfall density 

data distribution on the Chilean continental territory, a global mesoescale rainfall database, 

(50 km) was obtained from Global Precipitation Climate Centre (GPCC). GPCC was 

validated by comparing in-situ meteorological records (12,240) spread all over the 

continental Chilean territory. As the difference between GPCC and in situ data was < 10 %, 

we concluded that the GPCC database can be used to validate the DGF-PRECIS database in 

all continental Chilean territory. DGF-PRECIS database reproduced well the rainfall pattern 

from central to southern Regions (56-30º S) under neutral conditions of ENSO influence. 

However, in the northern regions (17°-30°S), DGF-PRECIS database showed unacceptable 

errors (>30%). This was explained based on climatic pattern influenced by stationary 

Pacific Anticyclone in northern Chile.  

In Chapter 4, the corrected DFG-PRECIS database  was downscaled to obtain a 

high resolution rainfall grid (1 km) using a topography model (Precipitation 

Characterization with Auto-Searched Orographic and Atmospheric, PCASOA). The 

downscaling was performed over the Araucanía Region and allowed the analysis of climate 

pattern that cannot be observed using mesoscale climate model. In general, our results 

indicated an increase of the orographic effect (i.e. rainfall shade) and delay in the dry 

season in the northern region. 

In Chapter 5 we show the winter wheat crop projection for A2 scenario (between 

year 2070 and 2100) and yield response. We computed high resolution downscaled dataset 

(CERES crop model, DSSAT). The result indicated a high spatial and temporal variability. 

The projected crop yield increased in 52.5% over the base line (1961-1991). According to 

simulation results, sowing time is modify, May instead of April in wet zones and March 

instead of April on dry zones.  

 In Chapter 6, we performed a spatial analysis to evaluate the impact of high 

resolution downscaling climate on crop yield simulation response. We propose an optimal 

climate grid cells size using semivarograms technique including topographic effects. The 

optimal climate grid cell size in complexity topography zones (hilly side, low mountain 

ranges) was < 7 km and > 25 km in flat intermediate depression and costal zones.  
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 Finally, a general discussion and concluding remarks is presented in Chapter 7. Our 

main conclusion suggests the corrected DGF-PRECIS database is an important input of 

climate information for adapting new public policies for future scenarios. Downscaling 

based on topographic techniques improved the climate projection compared with insitu 

data. Our projected crop response showed important differences at complex topography 

zone compared with flat agricultural land. It seems possible to use semivariograms 

techniques for determining the optimal climate grid cells resolution for crop modeling 

porpuses.  

 Several challenges persist for achieving climate change adaptation. Further research 

is needed to understand climate cycles, such as ENSO and Antarctic Oscillation, genetic 

plant adaptation and soil-plant-climate interactions. The tools developed in this thesis may 

contribute to frame new scenario projections, particularly for southern Chile. 
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1. General Introduction 

Climate is one of the main concerns in agriculture (Hansen et al., 2006; Betts, 2005). 

Several climate-crop problems such as drought and frost, extemporaneous rains, and 

extreme events are more frequent (Beniston et al., 2007). All these phenomena are 

associated to high probability with the global climate change (IPCC, 2007; 2013). Although 

there is a controversy about the importance of greenhouse effect on the current climate 

change, global warming is a phenomenon well supported by scientific evidences (IPCC 

2001; 2007; 2013). Climate change will modify crop yield responses implying important 

consequences on food security (Porter y Semenov, 2005; Rosenzweig and Parry, 1994; 

Thomson et al., 2005). Also, climate change will increase frequency of extreme event, 

decrease water supply, and increase pest and plant diseases (IPCC, 2001; 2007). 

 To mitigate agriculture damage produced by climate change (or even benefit from 

the new climate condition) the first step is climate projection through climate models. 

Climate projection helps to design management practices such as: selecting climate-fitted 

plants, choosing the best date and location for planting, and implementing safe agricultural 

mitigation measurements. However, climate models have several biases, for example 

climate forecast. For this reason the term “climate projection” instead of “climate forecast” 

is used in this thesis (IPCC, 2007; Räisänen, 2007).  

Climate models are based on physical laws, such as: energy, momentum and mass 

(water) conservation, Navier-Stokes flow laws, and hydrostatical equations, among others. 

These models use partial differential equations solved by numerical methods (Zorita, 2000; 

Gutierrez y Pond, 2006), which are called Atmospheric and Oceanic Global Climate 

Models (AOGCM) to simulate the oceanic and atmosphere dynamics at global scale (i.e. 

the whole Earth). They are originally used for forecasting short-term meteorological 

conditions (Räisänen, 2007). However, through some simplifications, they are adapted for 

long-term climate simulations. These are: discretization of spatial values in low resolution 

“boxcells” (about 200-300 km of surface grid size), using of idealized years (i.e, 12 month 

of 30 days), parameterization schemes for sub-grid process simulation (Räisänen, 2007), 

and linked with nested models for simulating dynamical processes, which are “constant” 

under short-term simulation, such as atmosphere CO2 concentration, land-use, and ice cover 

(IPCC 2007).  

Climate models are the base of crop yield projections. Therefore, the first step is to 

develop a reliable climate projection, which should be validated using in-situ data. Since 

future data are not available, we cannot directly validate them.  On the other hand, climate 

models generate low resolution grid dataset, and climate records are punctual observations, 

which do not always represent the entire cell. For solving these problems, indirect 

validation methods have been developed, which are based on several models (ensemble) 

(Christensen et al., 2007) and/or the comparison between climate projection with current or 

past values (hindcast) (Beniston et al., 2007).  
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For assessing the climate change impacts, we require to understand the current 

climate patterns and identify their main drivers and source of variability. For Chile, one of 

the main climate drivers is El Niño-South Oscillation (ENSO) phenomenon (Kiladis and 

Val Loon, 1988; Guevara-Díaz, 2008). ENSO involves two components: El Niño current, 

and the southern oscillation. El Niño is a warm current which move from the North 

Australia to central Chile when the easterly Alisios winds are weakened. Southern 

oscillation is a temporal pattern of pressure differences measured in Darwin (Australia, 12º 

27’ S, 130º 50’W) and Papetee (Tahiti, 17º 32’ S, 140º 34’W). Both phenomena affect the 

Pacific Anticyclone, the main barrier to the fronts, which produce the rain in southern and 

central Chile (Montecinos and Aceituno, 2003). Therefore, for projecting the climate 

change impacts, we should describe the current spatial and temporal climate patterns, and 

including ENSO variation could be an interesting way. This description is used for giving a 

geophysical base of observed changes. Since, ENSO is not explicit computed in climate 

models (Vidale et al., 2003), it is expected that ENSO impact on climate variability 

projection, but not in the mean of the projection. This has not been evaluated. These 

analyses should consider both synoptic (i.e. country) and local (i.e. specific work domain 

for example, the Araucanía Region-Chile) view points. 

The use of climate models output used as input in crop model is a very common 

strategy for assessing crop performance under climate change conditions (Tan and 

Shibasaky, 2003; White et al., 2011; Soussana et al., 2010). This approach presents several 

advantages with respect to other approximations such as: Ricardian Analysis, projection 

based on historical time series, or in-situ experimental approaches. Climate-crop 

simulations are precise and relatively easy to adapt to new scenarios and to changes on the 

conceptual framework. The crop simulation models are used by several researches in 

relation to the climate change. Thus, several studies use Decision Support System for Agro 

Technology Transfer (DSSAT) crop models  (e.g. Orrego et al., 2014; Meza et al., 2008; 

Long et al., 2006; Jones and Thornton, 2003), EPIC model (Erosion Productivity Impact 

Calculator) (Prya and Shibasaki, 2001), and other specific models (Semenov, 2007) for 

assessing the climate change on crop systems. The simulations are mainly performed in 

cereals, such as Wheat (Triticum aestivum L.) (Orrego et al., 2014; Semenov, 2007; 

Tomsom et al., 2005) and Maize (Zea mays L) (Meza et al., 2008; Jones and Thornton, 

2003). Besides, studies in Soybean (Glycine max [L.] Merr) has been performed (Grimm 

and Natori, 2006; Tan and Shibasaki, 2003). Most of these studies show the detrimental 

effects for adapting the crop system to new conditions. 

 One of the main problems for using the climate model outputs as input for crop 

modeling is that both, climate and crop models, are at different spatial scales (Baron et al., 

2005; Mearns et al., 2003). Most crop models are designed for performing simulations 

without spatial dimensions or for small areas when they are linked with the Geographical 

Information System (GIS). In both cases, climate inputs are local. On the other hand, 

AOGCM outputs are about 300 km grids, which are inadequate for crop modeling. In fact, 

there are important differences between global and local climate projections affecting crop 

modeling. Mearns et al. (2003) reported a decrease of about 25% in winter rains from 

models with 400 km to 50 km in the South Great Lake States (USA), which was translated 

into changes about 30 % in crop yield. Similar differences were also reported by Baron et 

al. (2005) in West Africa, and Tsvetsinskaya (2003) in Southern USA. The scale problem is 
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critical when complex topography areas are simulated. In fact, it occurs in our work domain 

in Chilean southern regions. For example, in Angol city (37°48′S 72°43′O) two 

meteorological stations located 3 km apart from each other showed differences up to 34% 

in annual average precipitation. Moreover, complex topography is the main land cover in 

many countries associated with poverty and low agricultural productivity. Complex 

topography also generates microclimates, which produce high valuable crops.  

 To improve AOGCM resolution, numerical techniques, called downscaling, have 

been developed (Wilby et al., 2004; Hewitson and Crame, 1996). Downscaling is used in 

many researchs related to climate change (e.g. Bergström et al., 2001; Hanssen-Bauer et 

al., 2005), but only a few studies have covered South America. The main examples are 

“CREAS” (Regional Climate Change Scenarios for South America) in Argentina, Uruguay 

and Brazil (Marengo and Ambrizzi, 2006), “Variabilidad Climática para el Siglo XXI” 

(“Climate Variability for 21th century”) in Chile (Fuenzalida et al., 2006), and Misra et al. 

(2003)’s work in the zone located between 30°N and 40°S. Chilean database was created by 

Departamento Geofísica, Universidad de Chile (DGF) through downscaling of Hadley 

Centre Coupled Model (HadCM3) outputs generated for the Third Assessment Report of 

IPCC (TAR, IPCC, 2001). DGF nested the atmospheric model called Providing Regional 

Climates for Impact Studies (PRECIS) (Fuenzalida et al., 2006) into HadCM3 for 

generating a complete climate database. This database (hereafter DGF-PRECIS) involved 

projection on the baseline data between 1961 and 1991 together with A2 (severe, i.e. high 
CO2 which is about 850 ppm and global temperature increasing about 3°C at 2100) and 

B2 (moderate, i.e. high CO2 which is about 621 ppm and global temperature increasing 
about 1°C at 2100) scenarios for 2070 and 2100 at 0.25º resolution (25 km grid). These 

projections showed a temperature increase across Chilean area, along with a decreasing 

rainfall in Northern and Central zones (18º - 30º S and 30º - 40º S, respectively). The 

reduction in rainfall increased the evapotranspiration and lowered the summer snow 

reserves representing a significant decrease in the ‘water supply’.  

Downscaling is a step forward in climate change research. However, few crop 

projections have been obtained with downscaling techniques. Semenov (2007) worked in 

UK using wheat crop as target vegetation with a 10 km size grid. In this work they used the 

UKCIP (The United Kingdom program for climate change adaptation) climate dataset, 

which was downscaled by a topoclimate regression and interpolation with irregular 

triangulation network algorithm. Zhang et al (2005) worked in Oklahoma using HadCM3 

projection downscaled by likelihood curves to site-specific records. On the other hand, 

when we perform a downscaling for modeling the crop yield, we are defining a spatial 

working scale. Thus, it poses the question: what is the optimum climate grid cell size that 

represents crop yield variability if the soil properties remain constant? This question is not 

solved yet. 

 In this thesis, we generate a general description of the rainfall pattern in both whole 

Chile (17º to 56ºS and 70º to74º W) and Araucania Region (37º to 40º S and 71º to 74º W). 

Using this description, we validated and corrected the DGF-PRECIS dataset by 

downscaling techniques to generate a high resolution (1 km) rainfall dataset for Araucania 

Region. Based on this rainfall dataset, we projected key Chilean crop yields such as winter 

wheat, assessing the impact of climate change of them. Finally we assess the impact of the 
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downscaling on the crop model proposing a methodology for defining the optimal grid cell 

size.  

This thesis is divided into seven chapters with four manuscripts in preparation for 

publication, one submitted and one published paper. In Chapter 1 we gave a general 

introduction. In Chapter 2, we presented a theoretical framework of the current knowledge 

about the impact of climate change and how assessing it by climate and crop models. In 

Chapter 3, we validated the DGE-PRECIS for Araucanía Region using in-situ records, and 

also including a validation for the whole Chilean territory that was required to understand 

the local model biases. In Chapter 4 we performed a downscaling technique which we 

applied in the Araucanía Region for a high resolution (1 km of grid size) climate dataset. In 

Chapter 5, we showed the crop projection made by corrected climate projection linked with 

CERES crop model (DSSAT). In Chapter 6 we performed a spatial analysis for measuring 

the effect of downscaling on the crop simulation model for an optimal climate grid cell size. 

Finally, a general discussion and the main conclusions are presented in Chapter 7. 

1.1 Hypothesis of the thesis 

Downscaling of climate models to high resolution (1 km) output significantly improves the 

performance of crop models than direct use of mesoscale climate model dataset in crop 

modeling. 

 

1.2 The goals were: 

1.2.1 Generate and validate a high resolution (1 km) climatic database for baseline between  

1961 and 1991 using DGF-PRECIS database downscaled using PCASOA model in 

Araucanía Region (coordinates), 

1.2.2 To generate a high resolution climatic database for future conditions A2 scenario of 

IPCC using corrected DGF-PRECIS database and PCASOA model. 

1.2.3 To estimate the climate change effect on winter wheat crop based on high resolution 

climate projections under A2 scenarios of IPCC. 

1.2.4 To measure the impact of spatial downscaling on crop modeling and define an optimal 

climate grid cell size to estimate the impact of climate on crop yield under different 

topographic complexity. 
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2. Assessing the impact of climate change through climate models coupled with 

crop simulation: Importance of downscaling 

Abstract 

Climate change implies important consequences on food security. Several authors have 

evaluated these effects using climate models linked with crop model called in this chapter 

climate crop modeling (CCM) approach. CCM is based on the Atmospheric and oceanic 

general circulation models (AOGCM), which simulates the state of the atmosphere and the 

ocean for the whole Earth based on physical laws. Although CCM measures the impact of 

climate changes on crop responses, it does not consider key issues of crop projections. One 

of the main issues is the difference between AOGCM output scale and the scale 

requirement of crop modeling. These differences are critical in complex topography areas, 

which are crucial for small farmers in many countries. Topography complexity generates 

microclimate conditions associated with important agronomic activities influenced by 

aspect, slope, and soil water retention. The aim of this review is to give a theoretical 

framework of current knowledge about the climate change impact assessed by linking the 

outputs of climate models as input for crop simulation models. Downscaling and related 

technique are discussed. We conclude that downscaling techniques are the best tools for 

correcting the scale differences between climate and crop models.  

Key Words: Climate projection, crop model, downscaling 

 

2.1. Introduction 

More before in 500,000 years, the concentration of atmospheric CO2 had reached the 

highest point at 400 ppm observed today (IPCC, 2013; 2007; 2001). In addition, the 

observed temperature has increased since Industrial Revolution affecting all the climate 

system. (IPCC, 2013; 2007; 2001). Both, climate and CO2 concentration are the main 

factors that impact the crop response (Murungan et al., 2012, Hansen et al., 2006; Long et 

al., 2006; Betts, 2005), in fact factors such as rainfall, solar radiation and temperature are 

the most important drivers on crop yield responses and food quality (Porter y Semenov, 

2005; Thomson et al., 2005; Rosenzweig y Parry, 1994). Thus, climate change adaptation is 

one of the main challenges for sustaining the food security.  

Knowledge of crop response and growing pattern under climate change scenarios will allow 

us to mitigate the negative effects by changing cultivars, identifying input requirements, 

and evaluating agronomic measurements to counteract deleterious effects and to improve 

crop adaptation to the new conditions. To understand crops response under climate change, 

several techniques have been proposed. There aresummarized in Table 2.1. All these 

methods are based on a sequence step, which combine climate scenarios associated with 

crop response (Figure 2.1). 
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Table 2.1. Methods used for assessing the impact of climate change on crop responses 

Methods Description Advantages Disadvantages Reference 

Ricardian 

analysis 

Multiple regression 

among climate values 

and economical outputs 

(land values or 

profitability) 

-does not need 

specific model 
- High error  Gbetibouo 

and 

Hassen, 

2005 
- can be used for 

future scenarios 

-Does not 

consider CO2 

effects 

In-situ 

experimental 

approach 

Established essays  

assessing plants under 

expected controlled 

conditions 

-Precise outputs 

(measurement) 

-Specific outputs 

(controlled 

condition. Also 

expensive to 

generate new 

conditions)                

- Expensive 

Dijkstra et 

al., 2010 
- can be used for 

future scenario 

Climate-crop 

current 

trends 

Research trends in the 

last years climate/crop 

behavior 

-Precise outputs 

(measurement) 

- Cannot be used 

for future 

scenario 
Lobell and 

Field, 

2007 - Do not need 

specific model 

-Do not consider 

CO2 effects 

Climate- 

crop models 

Simulate current and 

future crop behavior 

using a crop model and 

climate model outputs 

-Precise output 

(but not a 

measure) 

-Specific outputs 

(but easy to 

generate new 

conditions) 

 

Paruelo 

and Salas, 

1993 - Can be used for 

future scenario 
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Figure 2.1. Flow charts for developing crop projections (arrows) and their uncertainties 

(brackets). In the Flow chart inbox text main input data, free text main process, and dotted 

lines show other commonly used ways.  

 Climate model output used as crop modeling input (CCM) approach is one of the 

most used techniques for assessing the impact of climate change on crop response (Lee, 

2011; Challinor et al., 2009; Thomson et al., 2005; Paruelo and Salas, 1993). First, CCM 

results are precise and relatively easy to adapt to new changes on the conceptual 

framework. Moreover, this strategy also allows us to evaluate the countermeasure for 

adapting crops to new conditions. CCM has been used at both, global (Betts, 2005; Parry et 

al., 2004; Tan and Shibasaki, 2003) and local scale (Lee, 2011; Semenov, 2007), and it can 

be run under several climate conditions (White et al., 2011). This approach is supported on 

three key issues: (i) crop simulation, (ii) climate projection, and (iii) adjusted climate 

projection (mainly by fitting the scale). 

 Climate projection considers assumptions, conceptualizations, and climate model 

strategies used to estimate the effect of greenhouse gases on climate system. Several 

models have been developed for projecting climate change conditions, but they should face 

some problems such as future emissions, high resolution boundary condition, validation 

model projection, and the complexity of atmospheric simulation (Räisänen, 2007).In fact, 

several authors recommend the word “climate projection” (i.e. the goal is that the simulated 

values represent the mean and distribution of the real values) instead of climate forecast 
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(i.e. the goal is that the simulated values are close to the real values). Thus, long term 

climate modeling produces an expected climate condition at a possible long-term scenario, 

which is not the typical climate forecast, but it is a precise referential projection (IPCC, 

2007).  

Adjusting climate projection is the first step for improving the climate input by 

correcting the produced temporal and spatial bias (Wilk, 1992; Semenov and Barrow, 1997; 

Ines and Hansen 2006). Climate projection bias could affect significantly the crop 

projection. Lobell (2013) measured this impact using a statistical global crop. He concluded 

that temperature bias produces a slight change, but rainfall bias produces about 30% error. 

On the other hand, low spatial resolution (200-300 km) output database from climate 

models are commonly reduced to a high resolution (e.g. 50 km) grid (Challinor et al., 2009; 

Hansen et al., 2006) which affect the simulated crop response. For example, Mearns et al. 

(2003) reported 25% decreases in winter rains from models of 400 km to 50 km in the 

South Great Lake States (USA). This was translated in 30 % of crop yield decrease. Similar 

differences were also reported by Mearns et al., (2003) in other places of USA, Baron et al. 

(2005) in West Africa, and Tsvetsinskaya (2003) in Southern USA. On the other hand, the 

scale problem is more difficult when complex topography areas are simulated producing 

microclimate and inherent spatial variability.  

In this review we examine the CCM approach for assessing the climate change 

impact on agriculture. We address the scale problem and downscaling techniques as a 

possible solution. This improvement allows a better understand the problems including 

climate projection in complex topography land. This review is divided into six sections. In 

the first section we discuss the main concepts to understand the crop modeling identifying 

uncertainties attached to the model output projections. In the second section we review the 

main issues related to climate projection identifying their uncertainties for the crop 

response. In the third and fourth section we defined the scale problem and we proposed 

downscaling techniques. Finally, in the sixth section we present the main conclusions and 

future prospects for CCM approach. 

2.2. Crop models and climate crop models 

Crop simulation is the process of translating climate projection into agriculture terms 

through crop models. Crop models are mathematical tools combining mechanistic and 

empirical equations to simulate the main plant processes (Villalobos, 2002). These models 

appeared in the early 1970’s with De Witt’s works reviewed by Van Ittersum, et al. (2003). 

Besides, there are some studies funded by the intelligence services of the USA contributing 

to predict agricultural production in the USSR farms (Villalobos et al., 2002). Crop models 

used weather variables (photosinthetically active solar radiation, precipitation, 

temperatures, and wind speed when use Penman Monteith model for simulating the 

evapotranspiration), soil physical and chemical properties, and plant ecophysiological 

parameters to predict crop yield response (Brinsson et al., 2003). 

 Crop models is originally performed mainly for a specific zone, but the main 

models allow linking the crop model output with Geographical Information System (GIS) 
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for representing the crop spatial variability. Batchelor et al., (2002) defined three strategies 

for linking the crop models with GIS: (i) defining homogeneous cells and modeling each 

cluster, (ii) applying point-based models on imagery derived zones within a field, and iii) 

combining point-based models with spatial water balance. Three strategies are commonly 

used with advantages and disadvantages. The first strategy is easier than the other two, but 

it cannot represent the relationship between near zones (spatial autocorrelation). The second 

and third strategies represent autocorrelation, but require many complex spatial 

measurements. Nowadays, remote sensing tools obtain spatial data to use the later 

strategies.  

 The crop models allow a systemic evaluation of weather variables on crop response, 

but some empirical parameters inside the model structure must be measured in-situ and 

tuned. On the other hand, there are also changes under fixed conditions,  changing from 

short-term to long-term crop simulation e.g. crop managements, crop varieties, pest, and 

genetic coefficients, (Challinor et al., 2009). Soussana et al. (2010) claimed CCM must be 

based on the experience in for issues: (i) role of extreme climatic events, (ii) interactions 

between abiotic factors and elevated CO2, (iii) the genetic variability for plants to CO2 and 

temperature response, (iv) the interaction with biotic factors, and (v) the effect on harvest 

quality. 

 Climate change impact the crops system in two ways: 2.1) It produces changes on 

climate conditions and 2.2) it increases the CO2 concentration in the atmosphere 

(Chartzoulakis and Psarras, 2005; Olsen and Bindi, 2002; Lawlor and Michel, 1991; 

Huntingford et al., 2005). The main effects of these changes are detailed as follow. 

 

2.2.1 Changes on Climate condition 

The main effect of climate change is the temperature increases since preindustrial 

time (IPCC, 2007). Temperature accelerates plant growth rates speeding up phenological 

stages (Petrie and Sadras, 2008; Wolfe et al., 2005; Spark et al., 2005). In addition, it 

implies a carbon fixation decrease during this period, which may affect negatively the 

quality and quantity of crop yield (Hu et al., 2005). A fast developing process can produce 

an overlap between sensitive periods (flowering or some stages of fruit growth) under 

adverse weather conditions (Semenov, 2007; Meza et al., 2008). However, Zhang et al 

(2008) proposed that the relationship between temperature and phenology is non-stationary, 

which could mitigate this effect. Although the increase of temperature decreases the 

number of frost-days (Liu et al., 2008; Nemani et al., 2001), several authors propose that 

the early bud-break will also increase frost damage (Augspurger, 2009; Nemani et al., 

2001). 

 Another negative effect on high atmospheric temperature is the failure to reach 

vernalization in the cereal crops, which ensures the normal growth of the plant and 

flowering. Seed germination and pollen viability are also negative impacted (Vara-Prasad et 

al., 2006). Temperature can produce indirect effects on crops. Some examples are: pest and 
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diseases (Chakraborty and Newton, 2011; Yamamura et al., 2006; Cerri et al., 2007), water 

reserves, changes in nutrient cycling, and evapotranspiration increase (Brouder, 2008; 

Fisher et al., 2007) 

 Climate change modifies precipitation regimes with high spatial variability. Also, 

they show larger errors than temperature errors. The main effects are: high disease risk by 

high rainfall and temperature (Jara et al., 2013; Alexandrov and Hoogenboom, 2000), 

germination rate decrease by changes of soil water content (Sayar et al., 2008; Rounsevell 

and Reay, 2009), increases of photosynthesis rate by high soil water content reserves 

(Rounsevell and Reay, 2009), water stress in critical phenological stages by low rainfall 

(Lobell et al., 2007), flower drop by extemporaneous rainfall, altered polinitation (Cock et 

al., 2013 ), seed germination before harvest (Grupta et al., 2009), and yield quality losses 

by high humidity (e.g. cracking in cherry). On the other hand, flood and drought produce 

important crop production damage (Lobell and Burke, 2008; Rosenzweig et al., 2002), 

hence extreme event is an important issue for assessing the effect of climate change on crop 

systems (Soussana et al., 2010; Lobell and Burke, 2008). 

2.2.2 Changes of atmospheric CO2 concentration 

Increases in atmospheric CO2 concentration stimulate photosynthesis (Amthor, 

2001) although this is not necessarily translated into productivity (Fuhrer, 2003). In 

addition, if the plant metabolizes more carbon, water and nutrients requirements are 

increased as well. Therefore, this phenomenon only temporally improves crop growth 

(Lobell and Field, 2008; Gitay et al., 2001). This concept is called CO2 fertilization (Long 

et al., 2006; Thomsom et al., 2005).  

 Decrease in stomatal conductance (i.e. a numerical measure of the maximum rate of 

passage of either water vapor or carbon dioxide through the stomata) is another effect of 

CO2 (Drake et al., 1997). However, this is often mitigated by the availability of water and 

changes on the leaf area index (Olesen and Bindi, 2002). A CO2 increase can also mitigate 

the effect of temperature on the phenological development (Centritto et al., 1999; Sparks et 

al., 2005; Reyes-Fox et al, 2014), but the main crop models do not include this effect. 

Several authors have pointed out that an increase in  CO2 concentration produces: (i) an 

increase on nitrogen uptake (Fangmeier et al., 1999; Prior et al., 1998) (ii) a decrease on 

nutrients-use efficiency (Drake et al., 1997), (iii) an increase of evapotranspiration rate 

(Tognetti et al., 2001), and (iv) a decrease in grain protein content of cereals (Tomsom et 

al., 2005). In this way, one of the most important challenges is to predict the impact of 

climate change on nitrogen, carbon, and water cycles inside the plant by an integral 

perspective (Morgan et al., 2011), such as the studies on grassland with free air CO2 

enrichment (FACE technology) (Dijkstra et al., 2010). Although the simulation is useful for 

assessing the effects of CO2 on the plant response, Long et al. (2006) argued that the effects 

are overestimated. The main reason is that crop models are tuned in "enclosure 

experiments". However, Ziska and Bunce (2007) compared “enclosure experiments” with 

others based on FACE technology obtaining similar results. Figure 2.2 presents an 

overview of the effects of climate change and the atmospheric CO2 increase on crop yield 
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Figure 2.2.Relational diagram representing the effects of climate changes (increases in 

atmospheric CO2 and temperatures) in agriculture. We denoted a positive feedback by 

+,negative feedback by –, and no effect by 0. Elusive feedbacks are denoted by question 

mark. 

 The crop models must consider both, the effect of meteorological conditions and the 

effect of atmospheric CO2 increase. Today, photosynthesis oriented models are suitable for 

this purpose and one of the most wodly used is DSSAT (Decision Support System for Agro 

Technology Transfer) developed by IBSNAT (International Benchmark Sites Network for 

Technology Transfer) (Jones et al., 2003). DSSAT is a decision support tool containing 

several models such as CERES (mainly for cereals) and CROPGRO (mainly for legumes). 

There are also studies based on EPIC model (Erosion Productivity Impact Calculator) (Prya 

and Shibasaki, 2001). The simulations are mainly performed in cereals, for wheat (Triticum 

aestivum L.) (Semenov, 2007; Tomsom et al., 2005), maize (Zea mays L) (Meza et al., 

2008; Jones and Thornton, 2003) and soybean (Glycine max L. Merr) (Grima and Natori, 

2006; Tan and Shibasaki 2003). The climate change impacts on agriculture projected by 

CCM are inherently uncertain. For solving these uncertainties, Asseng et al (2013) 

proposes to use multi-model simulation. They perform a meta-analysis, including recent wheat 

yield simulation. They observed significant differences among them, which are reduced 

when the models are fully calibrated. In this way, in 2012 started the Agricultural Model 

Intercomparison and Improvement Project (AgMIP) conducting a series of activities to 

support integrated climate change impact assessments for agricultural systems (Rosenzweig 

et al., 2013).  

In South America, crop simulations have been performed mainly on maize (Meza et 

al., 2008; Jones and Thornton, 2003). They are based on HadCM models (Meza et al., 

2008; Paruelo and Salas, 1993) and ECHAM models (Grimm and Natori, 2006). The output 

of these studies is at continental scale and they project a decrease in the crop yield 

response. The reduction occurs in almost all countries, except for Chile and Ecuador (Table 
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2.2). These results should be considered with caution because they did not consider 

varieties used in Chile, Brazil, Mexico, and Argentina (Jones and Thornton, 2003). 

Table 2.2.Climate change impact on maize yields in different South American countries. 

(Adapted from Jones and Thornton, 2003) 

Country 

Productive 

area
*
 

Measured 

current yield
*
 

Modeled 

current yield
**

 

Modeled 

future yield
***

 

Country variation 

future yield
****

 

(Km
2
) (Kg ha

-1
) (Kg ha

-1
) (Kg ha

-1
) (Ton) 

Argentina 28,000 5,500 1,189 1,065 -347,200 

Belice 180 2,111 1,380 1,032 -6264 

Bolivia 3,061 2,214 1,278 1,088 -58,162 

Brazil 128,190 3,237 1,377 1,032 -4,422,558 

Chile 826 9,431 2,600 3,470 71,820 

Colombia 5,800 1,828 1,492 1,404 -51,040 

Costa Rica 130 1,731 1,781 1,581 -2600 

Ecuador 4,596 1,398 1,538 1,539 460 

El Salvador 2,627 2,165 1,781 1,556 -59,106 

Guatemala 6,350 1,575 1,853 1,778 -47,625 

Guyana 26 1,192 2,349 1,735 -1596 

Honduras 3,650 1,370 1,611 1,350 -95,265 

Mexico 76,800 2,500 1,555 1,440 -883,200 

Nicaragua 2,750 989 1,670 1,375 -81,125 

Panama 600 1,250 1,306 1,068 -14,280 

Paraguay 3,700 2,432 1,187 1,156 -11,470 

Peru 5,239 2,707 1,574 1,527 -24,623 

Puerto Rico 5,4 1,870 1,293 1,029 -143 

Suriname 0.2 2,000 827 740 -2 

Uruguay 425 1,522 1,413 1,386 -1,148 

Venezuela 4,500 2,667 1,323 967 -569,563 
*
Based on FAO record (year 2000) 

**
Based on base-line HadCM2 simulation (averages between 1961-1991) 

***
Based on HadCM2 simulation performed by Cullen (1993) for the year 2055 

**** 
Variation computing by the differences between modeled current yields minus modeled 

future yield times by productive size 

 

2.3. Climate projection 

Several simulation models were developed to project future climatic conditions considering 

the concentration of greenhouse gases and ocean dynamics (IPCC, 2007; Cohen 1990; 

Gates, 1985). These models are called atmospheric and oceanic general circulation models 

(AOGCM) (Houghton et al., 1997). Nowadays, AOGCM-outputs generate databases, 

which are used as meteorological crop model input for evaluating the effect of climate 

change on agriculture. The AOGCM are very similar to the models used in meteorological 

forecasting adapted by the explicit consideration of radiative forcing due to greenhouse 
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gases. Radiative forcing is a quantification of the impact of greenhouse gases by computing 

their impact in the energy balance in the atmosphere (IPCC 2001).   

Although both kinds of models are based on the same physical laws, long-term 

prediction is complex since the output presents more uncertainties by assumptions and 

simplifications (Räisänen, 2007). AOGCM outputs represent trends with precision, but they 

do not necessarily represent the accurate value. AOGCM are based on air flows generated 

by solar radiation differential warming on the earth surface (Mechoso and Arakahua, 2003). 

These flows result in many processes simulated from the laws of gases, the Navier-Stokes 

equations (fluid dynamics), the equations of thermodynamics, and balances of mass, energy 

and momentum. For solving these equations, a 3-D grid space division (boxcells) is built. 

The equations are solved at each cell by numerical methods (Anderson, 2003). Due to the 

complexity of these equations, AOGCM must assume the atmosphere at hydrostatic 

equilibrium (Anderson, 2003; Gutierrez and Pond, 2006; Zorita, 2000). Both, the ocean and 

atmospheric models increase the error associated with numerical diffusion, i.e. the error 

accumulated by rounding numbers and selected approximations of solutions during 

computations. Several models include a correction motor called flow adjustment (Gordon et 

al., 2000; Zorita, 2000). Thus, the flow energy for all computed interactions by the ocean 

and atmosphere models is independently corrected for the outputs (Zorita, 2000). Finally, 

AOGCM cannot explicitly model several phenomena at world scale such as cloud 

formation and rainfall. This problem is indirectly solved by functions of different modeled 

climatic outputs through parameterization (Gutierrez and Pond, 2006; IPCC, 1997; Zorita, 

2000). 

Nowadays, there is a global system to generate dataset for obtaining input for 

AOGCM (Rodell et al., 2004). Several databases were developed that combine models and 

historical dataset for validating forecasts. These datasets are called reanalysis and they are: 

NCEP-NCAR (Kalnay et al., 1996), JRA-25 (Onogy et al., 2007), MERRA (Bosilovich et 

al., 2006), and the ECMWF (ERA-40) (Uppala et al., 2005). Database output generated by 

AOGCM models include the main meteorological variables such as temperature, solar 

radiation, air humidity, precipitation, barometric pressure, components of wind vector 

among others (Russo and Zack, 1997). Some of the most commonly used models are listed 

in Table 2.3. 
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Table 2.3 Main AOGCM used in climate change research 

Model  Affiliation group  Country References 

IPSL-CM4 Institute Pierre Simon Laplace France Valcke et al., 2004 

ECHAM5 Max Planck Institute Germany Roeckner et al., 2003 

CNRM-CM3 
Centre National de Recherches 

Météorologiques 
France 

Déqué and Piedelievre, 

1995 

EGMAM Freie Universität Berlin Germany Legutke and Voss, 1999 

HadGEM1 Met Office U.K. Johns et al., 2006 

HadCM3 Hadley Centre U.K. Gordon et al., 2000 

BCM2 
Bjerknes Centre for Climate 

Research 
Norway Furevik et al., 2003 

GFDL-CDG1 
Geophysical Fluid Dynamics 

Laboratory 
U.S.A. Gordon and Stern, 1982 

NCAR-CCM3 
National Centre for Atmospheric 

Research (NCAR) 
U.S.A Bonan, 1996 

CGCM3 
Canadian Centre for Climate 

Modeling and Analysis (CCCMA) 
Canada Flato eta al., 2000 

CSIRO-

AOGCM 

Commonwealth Scientific and 

Industrial Research Organization 

(CSIRO) 

Australia Kowalczyk et al., 1994 

   The AOGCM outputs can be linked with crop models for projecting plant growth 

under climate change conditions. However, there are two key issues that should be 

considered when using AOGCM projection on crop simulations: climate change scenarios, 

and the working scale.    

2.3.1 Climate Change Scenarios 

The definition of climate change scenarios is based on estimations of future emissions of 

greenhouse gases and “negative radiative forcing”, such as SO2 and aerosols (IPCC, 2007; 

Lamb, 1987). These values are measures in CO2 equivalent (CO2 eq), which is the radiative 

forcing produced by 1 ppm of CO2. The prospective scenarios were built by simulating the 

economic and social impacts focused on growing population, environmental policies, 

technological growth, social equality, and globalization. There were several involved 

assumptions to determine global change scenarios described in the Special Report of 

Emission Scenarios (SRES, 2000). Thus six scenarios are proposed. Sorted based on the 

final expected warming they are: A1F1, A2, A1B, B2, A1T, and B1. There are differences 

about 6°C between A1F1 (the most extreme scenario) and B1 (Figure 2.3). Scenario 

selection is the first source of uncertainties, which are not associated with occurrence 

likelihood (Collins, 2007). Indeed, we do not know which scenario will be the right one in 

the future, but they help to develop public policies. Finally, we notice that several studies 

use only scenarios representing an extreme condition of high impact. The most of them use 

A2 for representing a severe (i.e., 850ppm of CO2 eq and global temperature increasing 
about 3°Cat 2100) impact and B2 for representing a moderate (621 ppm of CO2 eq and 
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global temperature increasing about 1°Cat 2100) impact (e.g. Fuenzalida, 2006, 

Marengo and Ambrizzi, 2006) 

 

Figure 2.3.Temperature changes projected by AOGCM (IPCC, 2007) for each SRES 

scenario. Shaded region show the "probable ranges". The gray bars on the right represent 

year 2100 temperatures considering the ranges (bars), and the averages (dark line inside 

the bar). 

These scenarios supported the projection generated in the Third Assessment report 

(TAR) and the Assessment Report 4 (AR4)developed by IPCC, and used for many 

countries for guiding public policies and adaptation countermeasures (IPCC 2007; 2001).  

SERES scenarios are not the unique used in the climate change researches. Before 

TAR scenarios, they used the so called IS92 scenarios (there are 6 from "a" to "f" sorted 

from most severe to less severe). Also, the last IPCC report (Assessment Report 5, so called 

AR5) propose improves new scenarios. These scenarios are based on a new concept: the 

"Representative Concentration Pathways" (RCP), i.e. patterns representing the expected 

GHG temporal behavior (IPCC, 2013). The main scenarios are summarized in the Table 

2.4. 
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Table 2.4. Scenarios used in the AR5 IPCC projection (adapted from Van Vuuren et al., 

2011) 

Scenario Description Severity 

RCP8.5 
Rising radiative forcing pathway leading to 8.5 Wm

-2
 

(~1370 ppm CO2 eq) by 2100. 
Extreme 

RCP 6.0 
Stabilization without overshoot pathway to 6 Wm

-2
 (~850 

ppm CO2 eq) at stabilization after 2100 

High (equivalent 

to A2) 

RCP 4.5 
Stabilization without overshoot pathway to 4.5 Wm

-2
 (~650 

ppm CO2 eq) at stabilization after 2100 

Medium 

(equivalent to B2) 

RCP 2.6 

Peak in radiative forcing at ~3 Wm
-2

 (~490 ppm CO2 eq) 

before 2100 and then decline (the selected pathway declines 

to 2.6 Wm
-2

 by 2100). 

Low 

2.3.2 Climate Model Uncertainties 

Although the equations that model the atmospheric-ocean circulation are well identified 

and boundary conditions are also obtained with high precision on a global-scale (Collins; 

2007; Räisänen, 2007), the models have an associated error due to parameterizations, 

numerical diffusion, assumptions, and simplifications used in the simulations. In addition, 

this effect increases by atmospheric chaotic behavior (Baize, 2003; Smite, 2003). However, 

this effect does not restrict their worldwide use (Bonan, 1996; Flato et al., 2000; Valcke et 

al., 2004). 

 The AOGCM differs in their climate projections (Allen et al., 2000; Weaver and 

Weirs, 2000) (Figure 2.4). These differences are explained by programming architecture 

(for instance, grid size, numerical schemes, parameterization of physical processes), 

together with differences in the nesting models (e.g. carbon balance, dynamics of aerosols, 

ice-cover) (Gutierrez and Pond, 2006). These differences were investigated using 

probabilistic scenarios. However, there are few examples for constructing scenarios based 

on these techniques (Wilks and Wilby, 1999). The Commission of the European Union 

called Climate Change and Environmental Risks Unit generates scenarios based on the 

combination of the main European models developing the emblematic ‘Ensemble Project’ 

(Morse, 2007).  
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.  

Figure 2.4.Global mean temperature change comparison between projections obtained by 

general circulation models for the year2040 under IS92a scenario (Allen et al., 2000). 

 Several authors reported that AOGCM models tend to overestimate the number of 

rainy days and underestimate the amounts of rainfall, called drizzle (Challinor et al., 2009; 

Baigorria et al., 2008). To solve this problem, daily-bias correction is used (Baigorria et al., 

2007; Ines and Hansen, 2006). Another strategy is to work with the difference between 

simulated present-day and future climates (Räisänen, 2007). In addition, the validation for 

using AOGCM for projecting climate change has some unsolved issues. There are 

temperature variations on the ocean stream flow due to differences in salinity 

concentration, the so-called thermohaline circulation (Toggweiler and Key, 2003; Clark et 

al., 2002; Vellinga and Wood, 2002). They can drastically affect the climate system. 

Furthermore, the water vapor feedback (Cess, 2005; Held and Soden, 2000), the potential 

increase of greenhouse gases originated by the tundra melting soils permafrost (Wille et al., 

2008; Osterkamp and Burn, 2003), and the future changes on the land cover (Räisänen, 

2007) are factors that may cause unexpected results.  

 Some phenomena affect the climate, but they are not used in climate models. For 

instance, volcanic eruptions produce important effect of climate system. Although it is 

impossible to forecast volcano eruption emissions of sulphurous and aerosols, we use 

stochastic models to simulate them (Collins et al., 2007). Other climate disturbance 

phenomena are not explicitly modeled in long-term climate projections, such as ENSO and 

OAA cycle (Räisänen, 2007).     

 Finally, it is important to emphasize that AOGCM scenarios are used to enable 

policy makers for developing new environmental strategies and mitigation control 

measurements (IPCC, 2001; 2007). In this way, IPCC  developed  improved projections 

indicated  in the fifth report (AR5), which considers better feedback (mainly improved land 

use projection and mitigation countermeasures).These projections includes the effect of the 

phenomena causing climate disturbances such as ENSO and Monsoon at an improved scale  

(Stocker et al., 2010).   
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2.4. Scale Issue 

To model the impact of climate conditions, we need to understand two facts: (i) climate is 

continuous on the space, but it shows an important spatial variability, and (ii) this 

variability is related with the level of generalization to understand the phenomenon.  For 

example, if we want to represent the air temperature, we can consider it homogeneous 

inside a small field, but there are important differences in different sections of each field. 

To understand the climate effect on the crop system, we need work under a scale concept.  

2.4.1 What is Scale? 

Scale is a critical concept in physical and natural sciences (Turner et al., 2001). Scale is 

defined as the spatial or temporal dimension of an object of process (Turner et al., 2001) 

providing a link between the phenomenon and its representation (Atkinson and Tate, 2000). 

Since our work is focused on the spatial issue, we refer only to spatial dimension, but the 

same ideas could be generalized for temporal dimension.  

Duncan et al (2002) recognized three components of scale: (i) ecological, i.e. the 

real scale at which a phenomenon happens, (ii) analytical, i.e. the minimum area considered 

as homogeneous when we analyze a phenomenon, and (iii) sampling i.e. the scale defined 

by the sampled data used for describing the phenomenon. Thus, in a climate grid, analytical 

scale is determined by the grid cell size, the sampled scale is determined with the density of 

meteorological stations or the final climate model resolution, and the ecological scale is 

intrinsic of the phenomenon to represent. Although the ecological component is the true 

scale of the phenomenon, we can only determine it based on the sampling and analytical 

component (García, 2006). Several techniques were developed to identify the ecological 

scale. The most used techniques are: high resolution transects (O'Neill et al., 1991), up-

scaling (Angulo et al, 2013), correlograms (Pearson, 1995), and semivariograms (Rahman 

et al., 2003).  

Geographical Information Systems (GIS) provide methods for changing the data 

scale and they integrate different phenomenon on a unique spatial framework (Atkinson 

and Tate, 2000). In fact, several phenomena cross many scales. For quantifying their spatial 

pattern, we need to understand how these pattern changes with the scale (Levin, 1992). Is 

there a right scale? A right scale should represent the phenomenon, but it does not 

complicate the data manages and the phenomenon understanding. In fact, the optimal scale 

is not necessary the highest scale. When the resolution is high, the details hide the general 

patterns. On the other hand, higher scales require more computational resources.  

Scale changes affect the spatial pattern of the phenomenon producing the well 

known modifiable areal unit problem (MAUP; Angulo et al., 2013; Openshaw, 1984; 

Openshaw and Taylor, 1981). MAUP is originated in different ways once the work domain 

is divided into homogeneous areal units (e.g. pixels). It implies that a geographical data 

shows different values depending of the selected way that the work domain is divided. This 

areal unit does not have an intrinsic geographical meaning and it does not have any validity 

independent of the units which are being studied. MAUP encompasses two components 
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called (i) scale problem and (ii) aggregation problem. The former represents the variation in 

the results that can be obtained when we used progressively larger scales. The latter 

represent the differences produces when the grid is move in different directions. 

2.4.2 Scale and climate models for crop modeling 

American Meteorological Society’s Glossary of Meteorology (2013) defined three types of 

scales for clime: Synoptic (>2,000 km), Mesoscale (2 to 2000 km of grid size) and 

microscale (<2 km of grid cell size). Moreover, mesoscale is divided in meso-α (2000-200 

km of grid cell size), meso-β (200-20 km), and meso-γ scales (2–20 km of grid cell size). 

However, it is necessary to fit this definition when we work with climate models. AOGCM 

work with meso-α scale usually referred as “global scale” and “mesoscale models” 

corresponding to scales from 20 km to 50 km (Räisanën, 2007; Giorgi y Mearns, 1999). 

Also, Plants are affected by the site-specific (in-situ) environmental conditions and it is 

very difficult to obtain the climate variables for representing these conditions. When we 

model a crop system based on a climate grid, we are representing the crop spatial variability 

derived from the climate grid. Thus, climate model output scale is an important issue for 

understanding the crop model uncertainties and its applications in climate change research. 

 AOGCM are based on grid cells which are homogeneous representing the zonal 

values. However, grid cells cover areas, and the climate variables are referred at specific 

points which change inside a grid cells. In 1991, Grotch and MacCracken compared 

AOGCM outputs and observed that the spread in the zonal average records for the same 

zones increases when is considered small areas. Later, Zorita and Von Storch (1997) re-

interpreted this work, claim that at finer scale climate models reduce their skill. Both works 

hint that there is a minimum scale where the model effectively represents the phenomenon, 

and higher resolution show important errors explained by the scale differences. This scale 

was defined as skillful scale, and it is about eight times the grid size, although this may be 

modified by (i) the choice between atmospheric spectral models or grid-point models; (ii) 

the numerical integration schemes and discretization; and (iii) the surface process 

parameterization schemes (Benestad et al, 2007).  Therefore, AOGCM outputs database are 

not used in crops simulation models, because crop models are designed to work with point 

simulations (Baron et al., 2005; De Witt et al., 2005; Hansen et al., 2006). In fact, most of 

the current simulations linking crop models with climate models work with mesoscale 

model, improving the quality of the output database simulations (Baron et al., 2005; 

Mearns et al., 2003). Challinor and Wheeler (2009) give another alternative developing a 

crop model adapted for AOGCM as climate input. The model is named GLAM (General 

Large-Area Model), and it has been used to develop global crop projection (Challinor et al., 

2009; Challinor and Wheeler, 2008). 

 Scale problem would be extrapolated to temporal resolution as AOGCM outputs 

reliable for monthly values. In addition, AOGCM works with simplified years (i.e. years of 

360 days), hence, we cannot overlap the AOGCM outputs with yearly meteorological 

records. This is more important on the Southern Hemisphere, where crop seasons include 

the days between consecutive years. Temporal fitting is solved by stochastic weather 

simulation models, i.e. simple algorithms that generate a random variable with the same 
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probabilistic distribution functions for monthly meteorological data (Wilk and Wilby, 

1999). In addition, this technique adds the effect of climate variability on crop simulations 

(Mearns et al., 1996; Semenov and Porter, 1995).  

 Stochastic weather simulations have uncertainties. This technique assumes that local 

weather parameters are homogeneous across each grid cell, which is not always the case at 

large scale. In addition, the stochastic simulations of estimated weather variables are 

independent from neighbor pixels in contrast to meteorological variables (Wilks and Wilby, 

1999). This was explained by the regionalized geostatistical theory (Isaaks and Mohan, 

1989). Another disadvantage is simulating interannual variability and anomalies in the 

climate cycle (Wilks and Wilby, 1999). However, stochastic weather simulators have been 

improved by generating spatially consistent weather time series (Quian et al., 2002). The 

most used stochastic weather simulators are WGEN (Richarson, 1981) and LARS-WG 

(Semenov, 2007), both were used for developing several high resolution climate projection 

database such as: ELPIS (Semenov et al., 2010) for Europe, and ELPIS-JP (Iizumi et al., 

2012) for Japan.  Spatial fitting is more difficult than temporal fitting. Several authors use 

data interpolations for spatial fitting of AOGCM output to crop models. Data interpolations 

are unsuitable for improving the spatial resolution, because they do not recognize spatial 

perturbations that occur as a result of topography and land-cover. However, they are used in 

some studies (Jones and Thornton, 2003; Prudhome et al., 2002). 

 We conclude that downscaling is the best method for fitting the scale. Downscaling 

transforms dataset from a global to local scale (Hewitson and Crame, 1996; Kim et al., 

1984; Wilby et al., 2004). Notice that only a few papers on local scale crop simulations 

have been published. In the Web of Knowledge, there are only 62 researches related to 

climate change and crop using “downscaling”, and most of them on mesoscale 

approximation (i.e. 20-50 km of grid cell size), which is lower than optimal for crop 

system. We found only two papers using grid size less than 10 km (Semenov 2007, Zang et 

al., 2005). Downscaling will be explained in the next section.  

2.5.  Downscaling 

Crops are affected by site-specific condition which do not are represented AOGCM 

(Hansen and Indeje, 2004; Zhang, 2005). Therefore, we require method for change the 

scale from the AOGCM scale (about 300 km) to a scale with represent the site-specific 

spatial variability. These methods are called downscaling. Downscaling is a mathematical 

method for transforming a dataset from a global to local scale (Hewitson and Crame, 1996; 

Kim et al., 1984; Wilby et al., 2004). Downscaling is classified into two groups: statistical 

(or empirical) and dynamical. We discuss them as follows, 

2.5.1 Statistical downscaling 

It consists in obtaining a statistical relationship between the data at the global-scale with the 

data at a local-scale (Hanssen-Bauer et al., 2005; Solman and Nuñes, 1999; Wilby and 

Wigley, 1997). Thus, we fit an algorithm (transfer function) that links known variables 

(predictors) with the output (predictands).  
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 The predictor must meet several conditions: (i) highly correlation with predictands, 

(ii) easy to obtain or estimated with high quality, (iii) sensitive to predictor changes 

(correlation must not be spurious), (iv) the relationship between predictors and predictands 

should not be modified under the simulated condition (stationary), and (v) ideally, their 

selection should be based on physical laws (Benestad et al., 2007; Wilby and Wigley, 

2000). Some predictors used in downscaling for climate change scenarios are relative 

humidity on specific geopotential height (measure in terms of barometric pressure), wind 

speed profile, and index related to either NAO (North Atlantic Oscillation) in Europe or 

ENSO in South America (Linderson 2004, Zagar et al., 2004; Wilby, 2001, Wilby et al., 

2002, Fischer et al., 2004)., These models are called large scale process driver models 

(LSPDM), because the main predictors are based on climate forces and they are available 

like software applications such as SDSM (Wilby, et al., 2002) and CLIM.PACT (Benestad 

et al., 2008). 

 As LSPDM translate grid-dataset into dot-dataset (one prediction for each 

meteorological station), they require a density meteorological station network with large 

time series records for making reliable high resolution grids and require interpolation 

algorithms for mapping. This could restrict the use of these models, especially in places, 

where there are few meteorological records.  On the other hand, when we model one 

meteorological station, it is impossible to validate the final output using a different dataset 

from the one they used for calibrating the model, unless we use a fragment of the dataset 

for calibrating it.  For solving these problems, spatial statistical models were developed. 

One of the most common ways for this downscaling is the random cascade approximation 

(Grupta and Waimire 1993). This approximation subdivides the rainfall in a specific zone 

(e.g. pixels or watershed) at a fine scale iteratively until the required resolution is achieved. 

Thus, a probabilistic model is fitted with the in-situ records located inside each subdivision 

(Gropelly et al., 2011). The most common models are: Bartlett-Lewis pulses, the Neyman-

Scott pulses, Markov Chain, and other derivations based on them (Kaczmarska, 2013). 

They are also called multifractal (Rupp et al., 2012). The topographical models are another 

alternative method for downscaling. They consider precipitations inside a low resolution 

grid cell and they distribute them among the high resolution pixels by empirical functions 

based only on topographical predictors. These models compute a deterministic function, 

which is used directly, or for fitting a random cascade function. The most prominent of 

them is PCASOA (Guan et al., 2009). 

 Statistical downscaling can be addressed by two ways: (i) there is a unique transfer 

function for all situations (perfect-prog, also called linear methods), and (ii) there are many 

transfer functions fitted to different situations (non linear methods) (Benestad et al., 2007). 

For (ii), clustering algorithms are used to obtain homogeneous areas. These are: the Model 

Output Statistics (MOS) (Allen and Erickson, 2001), the artificial neuronal networks (i.e. 

computational algorithms that can learn and recognize selected patterns in its operation) 

(Yuval and Hsieh, 2003), and the method of analogues (Timbal and McAvaney, 2001). 

 Before fitting statistical models for downscaling, several authors used “empirical 

orthogonal functions” (EOF) to remove temporal trends and minimizing computations 

(Benestad et al., 2007, Wilby and Wigley, 1997). The most used method is Principal 

Component Analysis. 
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 The main advantage of statistical downscaling compared to dynamical downscaling 

is simplicity. Therefore, statistical downscaling requires less amount of computing time 

than dynamical downscaling, which reduces implementation costs (Zorita and Von Storch, 

1999) with low numerical diffusion errors. On the other hand, these techniques mitigate 

errors inherited from global models by incorporating meteorological records (Benestad et 

al., 2008). Unfortunately, these techniques assume that future conditions are inside the 

range of data used for fitting, which can be criticized from climate change scenario points 

of view (Easterling, 1999; Wilby and Wigley, 1997).  

 It is observed that AOGCM underestimates the variance of the predictand (Burger, 

1996; Von Storch, 1999). For solving this problem, the authors introduced a factor for 

adjusting variances. This is called expanded downscaling. Although this method was used 

in several works, Von Storch (1999) showed that this technique induces bias. 

 Among the statistical downscaling methods, the most frequently used are:  (i) the 

regression fittings (Hessami et al., 2008; Foody, 2008; Hewitson and Crane, 1996), (ii) 

mathematical algorithms based on multivariate statistics, such as canonical correspondence 

analysis (e.g. Temebl, 2005; Benestad, 2007), (iii) approximation by climate profiles 

(Yarnal et al., 2001), and iv) stochastic climate generation (Bannayan and Hoogenboom, 

2008; Semenov and Barrow, 1997). In addition, algorithms based on artificial neural 

networks have also been used (Cannon, 2007; Dibike and Coulibaly, 2006).  

2.5.2 Dynamic downscaling 

Dynamic downscaling is based on atmospheric models nested to AOGCM (Prudhomme et 

al., 2002) using the output of AOGCM as boundary conditions. They are called regional 

climate models (RCM) (Giorgi y Mearns, 1999) or limited-area models (LAM), because 

they simulate a bounded area (domain). In this thesis we named this model as RCM. The 

main RCM are shown in Table 2.5. 

Table 2.5. Most used RCM
1
 in climate change research. 

RCM Research group Reference 

DARLAM CSIRO (Australia) Koe et al. (2003) 

NCEP-RCM NCEP (USA) Juang et al. (1997) 

SweCLIM 

Swedish Meteorological and Hydrological 

Institute (SMHI), Stockholm University and 

Göteborg University (Swedish) 

Rummukainen et 

al.,(2004) 

RegCM2 NCAR-Universidad de Pennsylvania (USA) Giorgi et al.,(1993 a,b) 

Scripps RSM National Meteorological Centre (NMC) USA 
Juang and Kanamitsu, 

(1994) 

ClimRAMS Colorado State University (USA) Pielke et al.,(1992) 

CRCM 

Université du Québec à Montréal and the 

CCCma global climate modeling team in 

Victoria (Canada) 

Caya y Laprice et 

al.,(1999) 

HIRHAM DMI (Damich) Christensen et al.,(1997) 
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PROMES Complutense de Madrid (Spain) Gaertner et al.,(2001) 

PRECIS/HadRM Hadley Centre (U.K.) 
Momber and 

Jones,(2004) 

MM5 
Pennsylvania State University and NCAR 

(USA) 

CHEN and DUDHIA, 

(1999) 

WRF 

National Centre for Atmospheric Research 

(NCAR), National Centers for Environmental 

Prediction (NCEP), Forecast Systems 

Laboratory (FSL), Air Force Weather Agency 

(AFWA), Naval Research Laboratory, 

University of Oklahoma, and Federal Aviation 

Administration (FAA) (U.S.A.) 

Skamarock, (1999) 

REMO MPI (Germany) 
Jacob and Podzum, 

(1997) 

CLM GKSS Forschungszentrum (Germany) Steppeler et al. (2003) 

RCAO SMHI Rossby Centre Döscher et al.,(2002) 

ARPEGE ECMWF (E.C.) Déqué et al.,(1998) 

CHRM ETH Zurich. Swedish Lüthi D et al.,(1996) 

RACMO KNMI (Netherlands) Lenderink et al.,(2003) 

1
Regional climate models

 

 Several nested simulation with boundary conditions uses “one way” strategies, i.e. 

no feedback is allowed (Denis et al., 2002), but nowadays it is corrected. Current RCM do 

not consider only boundary conditions, but also forcing interior grid cell using terms in the 

spectral domain. This method is called spectral nudging (Radu et al., 2008; Von Storch et 

al., 2000). 

 According to Giorgi and Mearns (1999), there are nine key issues to develop 

dynamic downscaling: (i) mathematical formulation of nesting, (ii) spatial resolution of 

input and output grid, (iii) spin-out of AOGCM and RCM, (iv) update frequency of lateral 

boundary condition, (v) physical parameterization consistence between global and nesting 

model, (vi) horizontal and vertical interpolation  (vii) domain size, (viii) quality of 

AOGCM, and (ix) climate drift and systematic error. 

 The main disadvantage of dynamical downscaling is the computational cost for its 

implementation (Hewitson and Crane, 1996; Pinto et al., 2014). Another disadvantage is 

the difficulty for testing the regional model. These models generate grid data, although 

available climate datasets consider only point data. Therefore, for indirectly validating the 

algorithms and the parameterization methods, several techniques have been created, which 

are summarized in Table 2.6. 
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Table 2.6. Main climate model validation methods 

Method Description References 

Big brother experiment It is based on a comparison between "big 

brother" grid and "little brother" grid. The 

"big brother” grid is the original RCM 

projection, whereas the “little brother” is a 

RCM performance, which uses as 

boundary condition a low resolution grid 

obtained by filtering the “little brother”. 

Dennis et al.,(2002) 

Cross validation 

method 

Consists of systematically deleting one or 

more cases in a dataset and predict the 

deleted data with a model calibrated using 

the remaining data. Finally, the predicted 

values are compared with the deleted 

original  

Michelsen, (1987) 

Non dimensional index Is based on the computing of indexes to 

quantify the climate model accuracy with 

respect to current and/or past observations 

(hindcast) 

Watterson (1996) 

Ensembles Is based on the comparison among several 

climate models, using them as individual 

observations. 

Christensen et 

al.,(2007) 

 Although the RCM is used for forecasting meteorological conditions and projecting 

climate change condition, both issues are different. The long term simulation models (i.e. 

referred to several years) need specific parameterizations and simplifications. In fact, a long 

term simulation considers dynamic subroutines (e.g. carbon cycle and ice cover). In this 

way, an important issue is the effect of the land cover, which is more important on high 

resolution grids (Betts, 2005).  

 In Europe, mesoscale resolution (20-50 km) climate projection has been developed 

on Prudence Project (Déqué et al., 2004). In these works, United Kingdom was a pioneer 

with UKCIP project (Semenov, 2007). There are also many researches based on statistical 

downscaling (Bergström et al., 2001; Hanssen-Bauer et al., 2005). However, only regional 

approximation (i.e. grids size about 50 km) has been used on crop simulation (Challinor 

and Wheeler, 2008; Olesen et al., 2007). This pattern is observed in others countries where 

recently it has been developed regional crop simulations: China (Xiong et al., 2009), 

U.S.A. (Doherti et al., 2003; Tsvetsinskaya, 2003) and Argentina (Magrin et al., 2009).  
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 There are few projects for AOGCM downscaling for South America. The main are: 

CREAS (Regional Climate Change Scenarios for South America) in Argentina, Uruguay, 

and Brazil (Marengo and Ambrizzi, 2006), and Climate Variability on Chile for XXI 

Century (Fuenzalida, 2006). Both projects were developed in association with Hadley 

Centre and they used the PRECIS model and HadCM3 output as boundary condition.  

2.6. Concluding remarks and future prospects 

AOGCM coupled with crop models do not only project future scenarios, but also allow us 

to guide future policy making. If we can project climate change conditions and crop yields, 

we can evaluate and guide agronomic countermeasures such as: changing sowing dates, 

selecting the best crop (or cultivar) for the new conditions, moving crops to areas where 

conditions are suitable, building dams, improving irrigating systems, developing new 

varieties, fitting agricultural supply productions, among others. However, there are several 

issues to be solved.  

 First, we should use ensemble climate scenarios for supporting decisions based on 

crop modellig. Scenarios are defined without probabilities, and there are differences among 

AOGCM which produce uncertainties which improve when several scenarios and AOGCM 

are used. Current efforts on this matter are significant. For example, European project 

ENSEMBLES demonstrates the awareness and concern about climate change issue. In this 

way, new developments of the involved processes need: water vapor feedback, sulphured 

aerosols, and subroutines of these gas cycles. Moreover, it is important to build scenarios, 

which include thermohaline circulation effects, melting of permafrost soils, and volcano 

eruptions. This is a great challenge to improve climate projections. It is important to remark 

that several uncertainties on climate model outputs have been mitigated by computer 

technological advances, which reduce numerical diffusion.  

 Second, we need to improve crop models. Crop simulation modeling needs to be 

tuned and widely validated by local-scale scenarios for both global circulation models and 

local crop simulation together. In addition, crop models need to consider the non-stationary 

relationship between temperature and phenology (Zhang et al, 2008). 

 Third, a non-explored strategy for improving the linking crop model with climate 

model output is to define the optimal cells grid size, which allows represent the spatial crop 

variability using the minimum computing. This strategy could be based on topography, 

which is the main driver to determine the spatial climate variation.  

 Finally, downscaling allows the conversion of global scale to local scale. These 

techniques are able to simulate scenarios at agricultural management-scale, although few 

attempts have been performed. Besides, downscaling will extrapolate from CCM to 

microclimate conditions, which has not been applied for agricultural projections. 
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3. Validation and correction of dynamically-downscaled projections of 21st century 

rainfall scenarios for the Araucanía Region 

Abstract 

 

In Chile, a mesoscale (25 km) database was generated by the Departamento de Geofísica, 

Universidad de Chile using HadCM3 and PRECIS model along all Chilean continental 

territory, hereafter DGF-PRECIS database. We compare the baseline DGF-PRECIS rainfall 

projection with in-situ rainfall records (56 meteorological stations) located in Araucanía 

region (37° to 40° S and 71° to 74° W), in order to validate and correct the climate 

projection (A2 and B2 scenarios of IPCC) at 25 km grid in our study zone. Araucanía 

region is important area because it concentrates about 35.4% of national cereal agricultural 

surface. Since one of the main climate driver in Chile is ENSO (not considered in DGF-

PRECIS database), we also asses these effects comparing DGF-PRECIS database with the 

time span where the phenomenon occurs in order to test whether DGF-PRECIS database 

simulate the ENSO patterns on the region. Based on these comparisons we describe the 

main rainfall pattern on Araucanía region, and corrected the simulated climate dataset by 

computing a monthly ratio between in-situ and the modeled data. The result indicated that 

ENSO impact the PRECIS model output (DGF-PRECIS), which tended to underestimate 

the precipitation when La Niña and El Niño dominate. Only the neutral phase was well 

modeled with an error <30%. This do not affect the reliability of the climate projection, but 

could affect the futue climate variability estiamation. However the database presented a 

dryer summer and rainier winter. Consequently we corrected DGF-PRECIS using empirical 

coefficients values in Araucanía Region. Nonetheless, the previous results pose the 

questions why the DGF-PRECIS database does not perform well for La Niña and El Niño, 

and the extreme response differences of rainfall. To search for these errors we compared the 

DGF-PRECIS database with whole continental Chilean territory rainfall. However, there is 

an important lack of historical records baseline (1961 and 1991) to perform a proper 

validation at whole country territory. For increasing the rainfall density data a global 

mesoescale grid rainfall database from Global Precipitation Climate Centre (GPCC) was 

obtained. GPCC database was compared with in-situ meteorological records spread all over 

the whole continental Chilean territory (12240 records from 34 meteorological stations). As 

the difference between GPCC and in situ data was < 10 %, we conclude that the GPCC 

database can be used (including ENSO phases) to validate and correct DGF-PRECIS 

database. Our result indicated that DGF-PRECIS reproduced well the rainfall pattern from 

central to southern Regions (>30º S) under neutral conditions of ENSO influence. 

However, in the northern regions (< 30º S), DGF-PRECIS database showed unacceptable 

error (> 30 %). This was explained based on climatic pattern influenced by stationary 

Pacific Anticyclone in Northern Chile. 

 

Key words: Mesoescale models, validation, climate change projection 
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3.1 Introduction 

 

Due to ongoing and predicted future climate change (IPCC, 2007), studies investigating 

how these changes affect the agriculture and other socio-economic fields represents one of 

the main areas of worldwide interest field research (Mearns, 2001; Caldeira & Rau, 2000; 

IPCC, 2007). Atmosphere Ocean Global Climate Models (AOGCM) scenarios are used to 

enable policy makers to develop new environmental strategies and mitigation methods 

(IPCC, 2007). Several different prospective scenarios (see SRES 2000 for a review) have 

been projected, computing the potential economic and social impact of climate change with 

particular focus on population growth, environmental policies, technological growth, social 

inequality and globalization. Two scenarios have been investigated representing high CO2 

emissions (A2) and moderate CO2 emissions (B2) (IPCC, 2007). In fact, they are used for 

assessing model by several researches (Krugër et al., 2012; Conde et al., 2011; Rupa 

Kumar et al., 2006; Räisänen et al., 2004). 

Although physical laws which drive the atmospheric-oceanic circulation are well-

identified, and the global-scale boundary conditions for modeling are well established with 

high precision (Collins, 2007; Räisänen, 2007), climate models have different error sources. 

Several authors have reported that AOGCM tend to overestimate the number of rainy days 

and underestimate the amount of rain falling as drizzle (Baigorria et al., 2008; Challinor et 

al., 2009). In addition, the validity of using AOGCM for projecting climate change is 

questioned by a number of unsolved remaining issues such as the impact on thermohaline 

circulation and its effect on climate (Clark et al., 2002), water vapor feedback (Cess, 2005), 

the potential increase in Methane caused by melting of tundra permafrost (Wille et al., 

2008), and future changes in land cover (Räisänen, 2007). Furthermore, AOGCM were 

developed for global conditions (Zorita, 2000) and they produced low scale resolution 

climate projections (about 200 to 300 km). Downscaling techniques (Wilby et al., 2004), 

either statistical or dynamic (Zorita, 2000), are used to improve this information at a higher 

resolution. Although these techniques are commonly used worldwide (Karmalkar et al., 

2013; Déqué et al., 2005; Bergström et al., 2001; Hanssen-Bauer et al., 2005), there are few 

projects carried out in South America, among them CREAS (Regional Climate Change 

Scenarios for South America) in Argentina, Uruguay and Brazil (Marengo & Ambrizzi, 

2006) and Variabilidad Climática para el Siglo XXI performed recently for Chile 

(Fuenzalida et al., 2006). Adaptation strategies are evaluated and designed for local scales; 

hence, downscaling output validation is a very important challenge. 

For use the AOGCM outputs as support for design adaptation strategies to climate 

change, we require that they are validated. This validation must be based on the phenomena 

which drive the climate pattern in a specific work domain. Several databases are developed 

combining models and historical dataset for validating forecasts and researching 

atmospheric behaviors. One of the main database is the Global Precipitation Climatology 

Centre (GPCC), which is a rainfall monthly term grid (Huffman et al., 1997). In the last 

version, this database has a 0.5° grid size and it contains historical rainfall records from 

1900 up to 2013.AOGCM are developed for global conditions (Zorita, 2000) at low scale 

resolution (about 200 to 300 km). To minimize the impact of these errors, downscaling 

techniques are applied at higher resolution (see Wilby et al., 2004 for a review). 
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Downscaling techniques are classified into statistical and dynamic (Zorita, 2000). Statistical 

downscaling consists of fitting a probability distribution (transfer function) based on the 

relationship between the data from the global-scale (predictors) and the data at a local-scale 

(predictands) (Hanssen-Bauer et al., 2005; Solman and Nuñes, 1999; Wilby and Wigley, 

1997). 

Other issues affecting the climate projection reliability is El Niño Southern 

Oscillation (ENSO) phenomenon. In South America, ENSO is one of the main drivers of 

the climate variability (Montecinos and Aceituno, 2003). It involves two phenomena: El 

Niño current, and the southern oscillation. Both phenomena affect the Pacific Anticyclone, 

the main barrier to the fronts which produce rain in southern and central Chile (Montecinos 

and Aceituno, 2003). El Niño is a warm current which move from the North Australia to 

central Chile when the Alisios winds (global winds which almost always run from central-

southern Chile to North of Australia) are weakened. Southern oscillation is a temporal 

pattern in the difference between the pressure measured in two places Darwin (Australia, 

12º 27’ S, 130º 50ºW) and Papetee (Tahiti, 17º 32’ S, 140º 34’W). In normal conditions 

Papetee shows higher pressures than Darwin, but when the El Niño current affect Chile, 

this relationship is shifted (Kiladis and Val Loon, 1988; Guevara-Díaz, 2008). Moreover, 

sometimes the pressure difference between Papetee and Darwin is increased which match 

with a cooling in the sea temperature in the coastal Chile (Kiladis and Val Loon, 1988). 

This phenomenon is called "la Niña". Thus three phases of ENSO are defined: La Niña, 

Neutral, and El Niño (Montecinos and Aceituno, 2003). There are several criteria to define 

the ENSO phases, which are based on: i) sea surface temperature anomaly on specific zone, 

and ii) pressure difference anomaly between Papetee and Darwin. For the last criterion the 

most used is the called Southern Oscillation Index or SOI (Kiladis and Val Loon, 1988; 

Guevara-Díaz, 2008).  

Althoght ENSO is not explicitly included in long-term projections from AOGCM 

(Räisänen, 2007) both, La Niña and El Niño synoptic condition are obseved in the 

simulated long term time series. Assessing the rainfall pattern under non-neutral ENSO 

phases allow to understand the climate varability under extreme condition. However, since 

La Niña and El Niño conditions are not the typical pattern, it is required to check if climate 

models represent the climate variability under these phases, which are not performed for 

Araucania region. 

The first Chilean projection was performed by Departamento de Geofísica from 

Universidad de Chile (DGF) with a dynamic downscaling of Hadley Centre Coupled Model 

(HADCM3) output through the PRECIS model (Fuenzalida et al., 2006) and involved 

projecting baseline data (between 1961 and 1991) together with A2 and B2 scenarios 

(between 2070 and 2100) at 0.25º resolution in Chile. The result showed a temperature 

increases along the country with a decrease in rainfall in northern (18º-30º S) and central 

regions (30º-40º S). This database (hereafter DGF-PRECIS) project a rainfall decreases 

produced an increased in the evapotranspiration, and lower summer snow reserves.   

Climate projection is especially important for the Araucanía Region, which is 

located between 35° 35’ S and 39°37’ W and between Argentina and the Pacific Ocean, 

because agronomic economy is largely composed of rainfall-dependent agriculture (INE, 

2010). Its climate is characterized by a dry season between December and March with 
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minimum rainfall varying from 50 to 70 mm per month, and a wet season from May to 

September with maximum rainfall of about 250 mm per month. Annual precipitation ranges 

between 800 and 1200 mm per year (about 45% is received between May and August; 

Rouanet, 1983). Within the seasonal/annual temperature cycles, the warmest months are 

from December to February, which show a temperature mean about 15 °C (with a 

maximum of 25-27 °C and minimum of 10 °C). Mean winter (June to August) temperatures 

are about 8 °C (with a registered maximum and minimum of 12 °C and 4 °C, respectively) 

(Rouanet, 1983). This zone is affected by ENSO cycles (Montecinos and Aceituno, 2002). 

The aim of this research is to build a complete precipitation database with the 

seasonal rainfall influence under El Niño, La Niña conditions to evaluate the impact of 

ENSO condition on rainfall. We also include the neutral effect without ENSO influence. 

The second goal of this study is to compare the baseline between 1961 and 1991 of 

HadCM3downscaled by PRECIS dynamic downscaling projections, particularly for the 

different ENSO conditions, and based on this comparison, to generate a corrected 

projection for the A2 and B2 climate change scenarios. The expected result will give a 

reference framework for measuring the impact of the high resolution model performances. 

 

3.2 Data and Methodology 

 

3.2.1 Dataset 

We selected 56 meteorological stations located in the Region (Figure 3.1) with a complete 

rainfall records from 1961 to 1991 (see below), whereas a few stations (5) presented other 

climate records such as photosynthetically active radiation (PAR) and temperature. Using 

the rule of decade continuous years or 15 years of non-continuous precipitation records 

between 1961 and 1991, The 10 selected stations were used for calibrating the mesoscale 

DGF-PRECIS database, whereas the 46 remain were used to validate the model. These 

criteria were defined to include the records within one Pacific Decadal Oscillation, which is 

the main source of climatic variability in the Region (Newman et al., 2003). To complete 

the data gaps, the extended discrete Fourier transformation (Zhang et al., 2008) was used. 

To check the data quality, we used the ‘double mass curves’ method (Searcy and Hardison, 

1960). This method is based in a regression models between the cumulated rainfalls in two 

close meteorological stations. This approach has been used successfully in several studies, 

including validation of Galician rainfall records (Mirás-Ávalos et al., 2009) and the 

development of ecologically relevant hydrological indexes by the United State Geological 

Service (USGS; Esralew and Baker, 2008).The remain meteorological station was used for 

validating the results 

3.2.2 ENSO classification 

For assess the impact of ENSO on rainfall pattern and climate projection, we require 

defining the ENSO phases for both: observed and simulated condition. When the ENSO is 

in positive phase (i.e. Niño) there is a high temperature in the Pacific Ocean, whereas when 
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ENSO is in negative phase (La Niña) there is less temperature in the Pacific Ocean. This 

can be assessed in many places defining the ENSO index which are differences (anomaly) 

between the normalized sea surface temperatures respect to the averages of a reference 

period (1971-2000), defined in an specific zone. The most common is the ENSO 3.4 which 

is defined between 120W-170W and 5N-5S.We started classifying the in-situ data into 

ENSO and Neutral years according to IRI criteria (see Guevara-Diaz (2008) for a review) 

based on ENSO3.4 index (http://iridl.ldeo.columbia.edu/) to classify months as representing 

‘La Niña’, ‘El Niño’ or ‘Neutral’ conditions. The sea surface temperatures were 

downloaded (available at http://www.ipcc-data.org/) from 1961-1989 and the relative 

ENSO3.4 index values were computed using IRI methodology.  

The same methodology was applied on the HadCM3 output. Sea surface 

temperatures were downloaded from the HadCM3 baseline (1961-1991) scenario (available 

at http://www.ipcc-data.org/) to construct analogue IRI criteria ENSO3.4 index and classify 

the output according to ENSO cycles.  

To assess the ENSO impact on climate rainfall condition, we compare the monthly 

climate average of each ENSO phases over this baseline time span (1961-1991). These 

differences were also mapped for identifying the spatial pattern of the ENSO effect. 

Mapping was performed by interpolation by ordinary kriging (Isaaks and Srivastava, 1989). 

Both: Monthly rainfall and map are summarized at seasonal level. Finally, we compute 

rainfall histograms to assess the frequency of the rain and dry month. These histograms 

were computed using the module Data Analysis of Microsoft EXCEL considering intervals 

of 50 mm.   

 We also evaluate the statistical significance of the impact of ENSO events of 

rainfall database HadCM3 downscaled by PRECIS to evaluate its three phases: El Niño, La 

Niña and Neutral years. , We used a one-way ANOVA test with a 95% significance level 

performed in the module Analisis de Datos of Microsoft EXCEL. ANOVA is a test which 

assess if there are significant differences among three or more clusters, evaluating the 

significance of the variable used for defining the clusters. Thus, the sum of the square of the 

differences among the mean of each group (variance between clusters, in our case the 

ENSO phases) should be higher than the sum of the square of the differences between each 

observation. The rate between both values follows a Fisher distribution (F), which allows 

evaluate the significance of the relationship. When this rate is higher than the critical F 

value there are significant differences among ENSO conditions (Wilks, 2006).  

 To performe a most robust test, we used Montecarlo analysis. Montecarlo analysis 

consists in fit a stochastic model based on the observed data for producing a syntactical 

data series, which follow the same probabilistic distribution than the observed data. 10.000 

rainfall data was generated based on Weibull distribution, which was fitted for each ENSO-

condition using the In-situ database. Thus the ANOVA was performed using the syntactical 

instead to the observed data.  

3.2.3 Comparison of meteorological records and DGF-PRECIS Outputs. 

To assess the DGF-PRECIS outputs, we download the downscaled from the web site of 

“Variabilidad Climática en Chile” (http://www.dgf.uchile.cl/~maisa/modelacion_climatica/) 
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performed by Departamento de Geofísica de la Universidad de Chile funded by Comisión 

Nacional del Medio Ambiente. Since databases was obtained in Net-CDF format, we use a 

routine programmed in the software MATLAB for pick-up the values corresponding to each 

meteorological station.  

For validating, we compared the downscaled projection over the corresponding 

baseline for HadCM3 (1961-1991) with its corresponding in-situ measurement through 

regression analysis. Thus, confidence intervals of slope, intercept and standard error were 

computed. General output trends were also evaluated by global statistics and histogram 

analysis, because climate models produce results in the form of projections rather than 

forecasts. Residual and spatial analyses were also performed by mapping in-situ and 

projected annual cumulative precipitation using ordinary Kriging techniques (Isaaks and 

Srivastava, 1989). Both evaluations were initially carried out using the whole database, and 

separating ENSO (El Niño, La Niña) and non ENSO (Neutral) conditions defined in 2.2. 

For all analyses, we considered the whole database in the region 

 

3.2.4 Projected dataset correction 

The final step involved the calibration of HadCM3downscaled by PRECIS 

precipitation data with the in-situ time series records to correct the projected rainfall 

database. Here, we propose a calibration coefficients based on differences between 

simulated and measured monthly records of precipitation (3.1). 

m

m

m

m fe
re

rm
fr       (3.1) 

where frm is the corrected projection, rmm is the monthly average of measured data, rem is 

the monthly average of estimated data and fem is the HadCM3 downscaled by PRECIS 

projected data. This coefficient was computing using all the in-situ data, obtaining a 

globally coefficient for each month. Thus the final product is the same DGF-PRECIS 

dataset (the same grid) but without bias. 

 

3.2.5 Extend climate model validation and ENSO effect over the whole continental 

territory. 

Finally we analyzed the general trend of model performance in the whole continental 

territory for understanding the error models. This work repeats the same methodology used 

for Araucanía region. However, is observed a lack of in-situ data for validating the model in 

the whole country considering explicitly the spatial pattern of the rainfall. For solving it we 

validated the model using the Global Precipitation Climatology Project (GPCC) database. 

This database is based on a merged analysis incorporating precipitation estimated from 

low-orbit-satellite microwave data, geosynchronous-orbit-satellite infrared data, and rain 

gauge observations (Huffman et al., 1997). This database originally provides monthly mean 
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precipitation grids on a global resolution of 2.5° × 2.5° for the period 1986–2000. However, 

the 3rd version is a monthly rainfall on a global 0.5° x 0.5º grid (about 50 km of grid cell 

size) from 1901 to 2007. This database is available in the World Wide Web on the site 

http://climexp.knmi.nl/selectfield_obs.cgi. We spatially interpolated the database using a 

bilinear method from the original 0.5° to an overlapping 0.25° to PRECIS database for 

generating a monthly rainfall grid dataset from 1961 to 1991 

For whole country validation, the first step was validated the GPCC database. We selected 

34 in-situ rainfall complete records which are spread over all the Chilean territory. Since 

Coastal and Andean Cordillera are not regarded, we select in-situ records located over the 

latitude between 17ºS and 56ºS S. Based on these criteria, only 34 meteorological stations 

were chosen for this research (Figure 4.1). Moreover, we select eight meteorological 

stations to observe the typical climate patterns in different climate zones. Six of them are 

located on the typical climate types defined on the genetic classification (Peña y Romero, 

1977). These station are: Iquique (20°12’S, 70°11’W) and Copiapó (27°21’S, 70°24’W) for 

northern zones, San Felipe (32°45’S, 71°15’S) for central zone, Temuco (38°45’S, 

72°38’W) for central-southern zone, and Punta Arenas (53°10’S, 70°54’W) for southern 

zones. The remains two are located near of the boundary of these zones. These are: 

Concepción (36°50’S, 73°3’W) the limit between the central and the southern zone, Puerto 

Montt (41°28’S, 72°56’W) the rainiest forest zone, and Chile Chico (46°36’S, 71°41’W) 

for Patagonia zone (Figure 3.1) 
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Figure 3.1.Meteorological station network used in this work. a) show the stations used on 

whole country validation. Here in red are showed the station used as reference for different 

climate zones. Sorted from North to South they are: Iquique, Copiapó, San Felipe, 

Concepción, Temuco, Puerto Montt, Chile Chico, and Punta Arenas. In b are showed the 

station used in Araucanía región validation overlapped over a digital elevation model. 

Triangles show the station used for validate the database and cycles show the station used 

for corrected the model.  

 

3.3 Results 

 

3.3.1 Regional climatology 

Our analyses show that Araucanía Region is characterized by mean annual accumulated 

precipitation of 1497±59 mm. From a geographic point of view, a positive precipitation 

gradient from North West to South East is observed. The largest rainfall amount is observed 

over the South East (39-39.5º S, 72.5-71.5º E) about 1000 to 2500 mm per year and the 

lowest, about 800 mm per year over the West coast (37-37.5º S, 73-73.5º E) increasing in a 
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gradient of 4.78 mm km
-1

. Higher rainfall levels occur during autumn-winter (May-July, of 

about 250 mm per month) and lower levels during summer-autumn (Jan-Mar, 40-50 mm 

per month) (Figure 3.1a). The left-skewness of the monthly precipitation curve shows that 

most monthly precipitation is distributed between 5 and 150 mm per month, with a median 

of 90 mm per month (with a roughly frequency of 7%) and a peak of 25 mm per 

month(14%) (Figure 3.1b). Months without rainfall occur with a frequency of about 4.18% 

(Figure 3.1 b). During the research period from January 1961 to December 1991, we 

observed 17 months under La Niña and 39 months under El Niño influence. The 

precipitation was distributed in three events for La Niña and four events for El Niño.   

 

Figure 3.1 (a) Seasonal precipitation cycle (bars represent standard error) and (b) relative 

(solid line) and cumulative (dashed line) frequencies of monthly precipitation. 

3.3.2 ENSO Effect 

Since ENSO is one of the main Chilean climate drivers, we focused our description on its 

variability. During the research period Jan-1961 to Dec-1991, we observed 17 Niña months 

and 39 Niño months corresponding to three Niña events and four Niño events. General 

rainfall spatial distribution patterns were similar under all ENSO conditions. However, 

there are significant differences among ENSO conditions, which change depending on zone 

and season. This is a different pattern respect to other Chilean regions classified in the same 

Mediterraneal clime, where El Niño condition implies rainny years and La niña condition 

implies dry years (Montecinos and Aceituno, 2002). 

During El Niño events, the mean accumulated precipitation is 1600 mm per year, to 

an increase in annually received precipitation of 103 mm per year. On the contrary, under 

La Niña conditions, the mean accumulated precipitation is 1200 mm per year, a reduction 

of about 297 mm per year. The winter and spring months of El Niño years are rainier 

(about 9%, i.e. +14 mm per month) than those in neutral years, whereas the summer and 

early autumn months of El Niño are less rainy (50%, i.e. 21 mm per month) than in neutral 

years (Figure 3.2 a). In contrast, La Niña winters are rainier in June and July but lesser 

rainfall in August producing that winter rainfall is less than Neutral rainfall (about 8%, i.e. 

3.92 mm per month). In addition, there is also less rainfall during the rest of the year, 

except for May (Figure 3.2a). Thus, the rainiest months also change with ENSO conditions. 

These are July (254 mm) under El Niño, May (303 mm) under La Niña, whereas June (277 

mm) is generally under neutral conditions.  
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Figure 3.2. (a) Annual rainfall cycles of ENSO scenarios and differences in monthly 

rainfall amount frequencies between (b) El Niño - Neutral and (c) La Niña - Neutral 

conditions. 

Rainfall spatial distribution patterns are similar under all ENSO conditions, 

although a small decrease in the latitudinal precipitation gradient occurs during El Niño and 

a small increase under La Niña. During winter period, La Niña events are generally 

characterized by greater precipitation levels in the northern western zone (37º S, 73º W) 

and reduced levels in the southern-eastern zone (39º S, 72º W), which is generally the 

region where it rains most. This pattern is reversed under El Niño conditions (i.e. during El 

Niño winters, greater precipitation levels are observed in the South East and lesser in the 

North West. In terms of the differences in monthly rainfall amounts in ENSO respect to 

Neutral years, an increase in the number of months of high rainfall (200 mm per month) 

was observed under El Niño conditions (Figure 3.2 b), whereas the inverse pattern occurs 

under La Niña conditions (Figure 3.2 c). These trends confirm ANOVA test of the 

Montecarlo analysis outputs, which showed that the rate between the sum square averages 

between cluster (variance explained by each ENSO condition) and inside cluster variance 

(total variance) is higher than the Critical F values. Therefore, there are significant 

differences among ENSO conditions. 

3.3.3 Evaluating model output 

Regression models are developed to assess the lineal correlation between two variables, 

hence fitting a linear model (y=ax+b) between a predictor variable (x) and a predictand 

variable (y) (Wilks, 2006). Regression model also assesses the explained variance for the 

model by a R
2
 coefficient. Although regression analysis tends to mask biases (see Wilks, 

2006) and it has been criticized by several authors as a method for validating models 

(Mitchell, 1997), it was used here only to investigate general trends. 

 Regression analyses performed on both models show that the intercept confidence 

intervals do not span zero, which means that some biases in estimation may arise. The same 
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situation occurs regarding slope, in which the intercept confidence intervals are 

significantly lower than one (Table 3.2), meaning that models also overestimate rainfall.  

Table 3.2. Results of in-situ/simulated regression analysis. Intercept and slope are the 

parameters obtained out of the fitting of regression between measured (in-situ) and 

modeled data. Adjusted R
2
 is the Pearson coefficient adjusted by degrees of freedom, and P 

value is the probability the slope will be equal to zero (in our case all P-values are close to 

zero, thus correlations are significant).  

  
HADCM3 (1961-1991) 

  
All La Niña Neutral El Niño 

Intercept 

Min. 33.498 3.4537 34.844 16.1486 

Mean. 39.2837 25.6956 41.2837 32.2852 

Max. 45.0695 47.9375 47.7235 48.4218 

Slope 

Min. 0.7242 0.5487 0.7261 0.6516 

Mean. 0.7573 0.6969 0.763 0.7375 

Max. 0.7903 0.8451 0.7999 0.8234 

Adjusted R
2
 34.75% 29.52% 34.45% 38.56% 

P Value 0 0 0 0 

N 3782 204 3125 453 

Standard error 113.471 113.471 128.7451 119.327 

HadCM3 outputs are fitted to ENSO pattern. In fact, La Niña years are drier than 

Neutral Years in both models, whereas El Niño years are wetter than Neutral years, which is 

consistent with the observed rainfall pattern in the region (Figure 3.3). 

 
 



 
 

41 
 

Figure 3.3. Mean precipitation for In-situ (I.S.) and projected by DGF-PRECIS (D.P.) 

values under all and ENSO conditions and for global simulation (All). Error bars represent 

standard error (over) and 95% significance values (under). 

 

Simulated mean monthly rainfalls (134 mm for HadCM3 in 1961-1991) are higher 

than the in-situ measured values (125 mm for 1961-1991), which confirm the 

overestimation observed in the previous analyses. This pattern is observed under all ENSO 

conditions (Figure 3.3). Model error bars overlap (Figure 3.3), which means that there is no 

significant difference between the in-situ measurements and simulated data (Figure 3.3). 

This fact agrees with the statistical significance testing carried out on the residual (in-situ 

measured vs. modeled) analysis with a T-test (95% significance level; Kleijnen, 1995). In 

this analysis, we obtained no significant differences between measured (In-situ) and 

HadCM3downscaled by PRECIS rainfall (-8.9 mm representing only less than 7% of the 

amount of measured annual rainfall). 

 

In relation to monthly rainfall distribution, both models (although we only present 

HadCM3) present greater seasonal variability than the observed cycle (Figure 3.4a). In fact, 

simulated summer months are drier (38.3%, i.e. -16.8 mm per month) whereas simulated 

winter months are wetter (15%, i.e. +34.6 mm per month) than those measured (Figure 

3.4a). Under El Niño conditions (Figure 3.4d), seasonal distributions of monthly rainfall are 

overestimated, except during the summer months. In contrast, La Niña conditions are well-

estimated for February, March, June, August and October, although there are important 

differences over the rest of the year (Figure 3.4b). 
 

 
Figure 3.4.In-situ and simulated (HadCM3 downscaled by PRECIS downscaled) monthly 

rainfall for All-data (a), La Niña condition (b), neutral condition (c) and El Niño condition 

(d).  
 
Geographically speaking (Figure 3.5), HadCM3 downscaled by PRECIS 

underestimates rainfall levels in the North (by about 10%, i.e. -10 mm per month), and it 

overestimates them in the South (by about 30%, i.e. +50 mm per month) under Neutral 



 

42 
 

conditions.  A similar pattern occurs under El Niño and La Niña years, where the model 

underestimates northern and overestimates southern rainfall rates by about the same values 

(Figures 3.5b, 3.5c and 3.5d).   
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Figure 3.5. Spatial patterns of measured (in-situ) (left) and HadCM3 downscaled by 

PRECIS projection over the base line period (1962-1991) (right), considering (a) annual 

precipitation, (b) averaged ‘La Niña’ condition, (c) average Neutral condition and (d) 

averaged ‘El Niño’ condition.  
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Rainfall histograms show a significant overestimation of small rainfall events, with 

the peak at 50 mm more prominent in the simulated curve than the in-situ measurements. 

This pattern is a good representation of the drizzle effect discussed earlier, which is 

inherent in all AOGCM (Baigorria et al., 2008). Indeed, the HadCM3 downscaled by 

PRECIS output does not include any months without precipitation, in deep contradiction 

with the in-situ data. 

3.3.4 Projected climatology 

It is necessary to correct these errors to accurately investigate the projected variability for 

the last decades of the 21st century (1961-1991) because the model has biases and it also 

overestimates some values. Therefore, empirical coefficients were obtained based on 

equation 3.1 to correct the dataset (Table 3.3).   

Table 3.3.Coefficient and change observed under both climate change scenarios. Original 

refers to the original HadCM3downscaled by PRECIS projection output. 

Month 
In-situ 

Coefficient 
Original 

A2 

Corrected 

A2 

Original Corrected 

Mean B2 B2 

Jan 43.20 0.61 16.04 26.16 10.62 18.68 

Feb 39.76 0.78 24.46 31.21 23.22 31.51 

Mar 43.40 1.63 45.62 28 53.93 34.03 

Apr 100.30 1.40 101.66 72.42 118.06 84.51 

May 242.12 1.01 196.65 194.97 228.62 230.13 

Jun 259.01 1.23 228.88 185.49 267.34 215.19 

Jul 254.25 1.09 209.72 192.62 247.76 229.08 

Aug 180.56 1.09 158.58 145.6 220.12 197.86 

Sep 117.31 1.28 77.26 60.54 119.61 93.72 

Oct 99.87 0.83 39.74 47.67 57.25 68.87 

Nov 68.70 0.63 20.2 32.01 24.27 39.11 

Dec 48.52 0.56 14.28 25.46 12.72 22.65 

Sum 1497.01  1133.09 1042.15 1383.52 1265.34 

Corrected scenarios show a decrease in annual precipitation, which is greater under 

A2 (a decrease of 30.38%, i.e. 458 ±42.4 mm per year) than under B2 scenario (15.48%, 

and 235±87 mm). In both cases, the corrected scenarios represent a greater reduction in 

precipitation than the original projection simulation (24.3% and 7.6%, i.e. 363.92 and 113.6 

mm per year for A2 and B2 respectively); see Fuenzalida et al., 2006 (Figure 3.6).  
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Figure 3.6.Original and Corrected monthly mean rainfall values for all baseline (1962-

1981), A2 and B2 scenarios. Error bars represent standard error (over) and 95% of the 

value based on a T-distribution probability (under).  

Under both scenarios the reduction in precipitation is higher for Summer (37%, i.e. 

16.2 mm per month for A2; 45%, i.e. 19.6 mm for B2) and Spring (51%, i.e. 48.6 mm for 

A2; 29%, i.e. 28.1 mm per month for B2) than for Winter (25%, i.e. 56.7 mm per month 

under A2; 7%, i.e. 17.2 mm per month for B2) and Autumn (23%, i.e. 30.1 mm per month 

for A2, and 10%, i.e. 12.4 mm for B2). Besides, in both scenarios the reductions are less for 

Autumn and Winter than the original projection (11%, i.e. 14.5 mm per month and 14%, i.e. 

34.13 mm per month for A2 Autumn and Winter, respectively, and 4%, i.e. 5 mm per month 

and 6%, i.e. 14 mm per month for B2 Autumn and Winter, respectively) and higher for 

Summer and Spring (52%, i.e. 34.9 mm per month, and 58%, i.e. 9.5 mm per month for A2 

Summer and Spring, respectively, and 30%, i.e. 19.9 and 65%, i.e. 10 mm per month for B2 

Summer and Spring, respectively) (Figure 3.7). 

 

 



 

46 
 

 
Figure 3.7 Simulated monthly rainfall for all scenarios considering (a) original 

HadCM3downscaled by PRECIS values and (b) corrected values (current conditions is the 

in-situ values). 

Although the corrected projections suggest less rainfall during winter and autumn 

which may explain the lower annual accumulated values, the main differences are observed 

in summer. The correct summer projection predicts more rain (24 mm) than the original 

simulation of summer (15 mm). On the other hand, both projections increase the rate of 

months with lower rainfall (less than 100 mm per month) from 57.17% to 68.52% and 

64.12% for A2 and B2, respectively. In contrast, there is a small difference of the high 

rainfall months (more than 450 mm per month) from 2.87% to 1.15 and 3.29% for A2 and 

B2 respectively.  

It is interesting to notice that the spatial pattern of precipitation predicted by the 

climate change scenarios shows that mountain precipitations will increase (by about 120 

mm per year under scenario A2 and 300 mm per year under B2) whereas coastal 

precipitation will decrease (by about 700 mm per year under A2 and 400 mm per year 

under B2). In addition, an increase in precipitation in the north east of the study area, of 

about 700 mm per year under B2 and 70 mm per year under A2 is observed (Figure 4.8). In 

contrast, there is an important decrease in the South of about 800 mm per year under A2 

and 100 mm per year under B2. This is of particular significance, because this area usually 

experiences the highest levels of precipitation and, as a result, it has become the location of 

important agricultural centers.  
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Figure 3.8 Spatial patterns of precipitation for original (left) and corrected (right) values 

under (a) Current (baseline epoch, 1961-1991), (b) A2 (2070-2100) and (c) B2 (2070-

2100) scenarios.  

 

 

 



 

48 
 

3.3.5 Whole country results 

3.5.1 Evaluating GCPC database through in-situ meteorological data 

GCPC annual accumulated amounts data follow the meteorological record pattern (Figure 

3.9 a). In fact, regression analyses show that the intercepting confidence intervals do not 

span zero, which means that some biases in estimation appeared. The same situation occurs 

with slope, where the confidence intervals do not include 1. However, there are two stations 

(Embalse Lautaro 27° 58’S 72°W and Puerto Aysen 45° 24’S 72° 42’W) showing 

overestimation between GCPC and in-situ annual cumulate data (R
2
 of 0.43 and 0.88 

respectively). The same pattern was observed when we considered the long -term average 

scale (Figure 3.9 b), where both stations show very high correlation (R
2
 of 0.99 and 0.92 

respectively), but they are far from the bisector. We suggest that records have uncertainties 

since both stations are independent and they are located on remote zones with problems for 

collecting data. 

 
 

Figure 3.9. Scattered plot among in-situ records and their corresponding GCPC data. In 

the figure all the cumulate year amount (a) and monthly the climatic average are showed 

(b). Gray dots show Embalse Lautaro and Puerto Aysen outlier stations.  

Since a high correlation is observed between GPCC and in-situ dataset at both levels 

(annual amount and long term averages), we used the GPCC database fitted to the DGF-

PRECIS climate pattern. Therefore, we use it for describing Chilean climate patterns, and 

for correcting the PRECIS dataset. 

3.3.5.2 ENSO Effects 

In the northern Region (from the northern boundary to 25°S), a permanent dry condition 

takes place (Figure 3.10). However, Altiplano rainfall increase takes place (about 100%, 

500 mm) in La Niña months, but a very small increase (about 4%, 20 mm) in the Altiplano 

rainfall under El Niño. Both issues could affect the neighboring zones. On the remaining 

months, there were no observed important differences among ENSO conditions.  

In the central Region (from 25°S to 35.5°S), there was about 20% rainfall increase 

under El Niño and a decrease under La Niña from 3 mm onto 40 mm on the southern 

boundary (Figure 3.10). This pattern has been reported by several authors and it is a 
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characteristic of this zone (Montecinos and Aceituno, 2003; Di Castry and Hayek, 1976). In 

summer, it is observed that zone without rainfall is larger under La Niña than under Neutral 

and El Niño conditions (Figure 3.10b). In fact, the northern boundaries of these zones are at 

31° 30’ S under Neutral and El Niño conditions, but 29° 00' S under La Niña condition. 

Notice that there are no changes at the southern boundaries.  

In the southern-central Region (from 35.5°S boundary to 42°S), the increase is less 

than in the north (Figure 3.10). In fact, this trend is reverted with respect to the Neutral 

condition at 40°S.  On the other hand, during El Niño events on this zone, the observed 

rainfall increase is about 1%. This zone is commonly included in the central zone, but some 

authors identify ENSO difference pattern. In fact, Montecinos and Aceituno (2003) 

reported differences in wet years and dry years when comparing rainfall among 30°S-35°S, 

35°S-38°S and from 38°S to 42°S.  

In the southern zone (from 42° to southern boundary), ENSO effect is changing 

through seasons (Figure 3.10). In summer, there is a rainfall decrease under La Niña (about 

30%, i.e about 33 mm) and no clear effect under El Niño (Figure 3.10b).  In autumn, a 

small rainfall decrease under El Niño condition is observed and no clear effect under La 

Niña 30% (Figure 3.10d). In winter, there were no effects on rainfall due to ENSO (Figure 

3.10c). In spring, there is a rainfall increase under La Niña (20%), and no clear effect under 

El Niño (Figure 3.10a).   
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Figure 3.10.Seasonal map for each ENSO condition. a) Spring, b) summer, c) 

winter, and d) autumn. Left images show La Niña, central images show Neutral condition, 

and the right ones show El Niño conditions 
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In the North (Iquique), most records correspond to no rainfall and ENSO does not 

show any clear effect on this zone. In the northern-central transition zone (Copiapó), we 

observed the typical pattern in the Southern Pacific Anticyclone influence zone, i.e. a 

rainfall increase during El Niño and a rainfall decrease during La Niña. However, we 

observed an area increase without rainfall under El Niño.  

In the central zone (San Felipe), Montecarlo simulation shows the expected pattern, 

i.e. a rainfall increase during El Niño and a rainfall decrease during La Niña. In fact, we 

observed a14% increase in months with rain over 4 mm during El Niño, but there are 

practically no events under La Niña condition. This effect is noticed in the dry months, 

which increase in 100% under La Niña, and decrease in 50% under El Niño (Figure 3.11).  

In southern-central transitional zone (Temuco, Concepción), there is over 150 mm 

increase in rainy months  and a 75 mm decrease in rainy months  amounts, but under El 

Niño event there is an increase in the no-rain months (Figure 3.11d).  

In the limit of the southern-central zone (Puerto Montt), we observed a rainfall 

decrease about 20% under El Niño and 60% under La Niña (Figure 3.11e). South (Chile 

Chico and Punta Arenas) is out of the influence of ENSO zone (Figure 3.11f). 
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Figure 3.11. Histograms of rainfall in each selected in-situ meteorological station 

considering each ENSO phases. a) Iquique, b) Copiapó, c) San Felipe, d) Concepción, e) 

Temuco, f) Puerto Montt, g) Chile Chico, and h) Punta Arenas 

 

3.3.5.3 DGF-PRECIS Validation 

When we compared the monthly climatic averages, we observed that differences 

depend on location. In the North, the model has large errors and a general pattern is not 

observed. For example, in Copiapó (Figure 3.8b), PRECIS model underestimates about 
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45% (2.44 mm per year) during July, but it overestimates in about 85% the annual amount 

(9.3 mm per year). On the other hand, in Iquique (Figure 3.8a), the DGF-PRECIS tends to 

overestimate about 43316% (37 mm per year) the whole year.  Notice that this zone is very 

dry. In fact, there are some months with rainfall mean is zero and we cannot compute 

relative errors. 

DGF-PRECIS performance improves when it is evaluated in southern stations. In 

central stations (Figure 3.12c), this model tends to reproduce the annual cycle, but it 

estimates the maximal rainfall peak in June instead of July, which is the month when we 

observed this peak. This issue is improved in the station located in southern-center (Figure 

3.12d), but the peak estimation fails again at the southern boundary of the southern-central 

zone (Figure 3.12e).  Less rainfall during the summer is explained by the southern location 

of the anticyclone (Saavedra et al., 2003), which blocks the fronts. 

Therefore, when the anticyclone is in the most northern place (July), we expect 

highest rainfall zones. Since the front moves to South, we expect rainfall peak in June for 

places located in the South of the anticyclone. Thus, DGF-PRECIS fixed the rainfall pick at 

June, suggesting that the model did not simulate the North-South anticyclone change. In 

fact, Fuenzalida et al (2006) and Seth and Rojas (2003) compared NCEP-NCAR reanalysis 

with this model and they observed a fitted pressure field pattern in summer, and a different 

pattern in winter. Comparing the new and the DGF-PRECIS database, we conclude that the 

pressure is not well represented in time.  

In the South, the model tends to overestimate systematically the rainfall in about 

44% (156 mm per year) on Punta Arenas (Figure 3.12f). Therefore, we observed that in all 

zones estimated rainfall peak was in June, whereas in the observed rainfall peak was in July 

in zones located between North and central zones, June in the southern-central transitional 

zone, and May in the South (Figure 3.12f). Overestimation in southern stations is consistent 

with the report by Fuenzalida et al., 2006, which proposes that HadCM3 should model a 

deeper Antarctic Circumpolar Current (ACC) than the observed data. In fact, a deeper 

ACCT implies higher rainfall. 

In the north, the model has important differences compared with measurement. In 

fact, the whole area is located in the North of Vallenar (28.5° S, 71.25° W) and the DGF-

PRECIS is overestimated in 100%. These differences could be explained by the altitude 

gradient of this zone (Altiplane). In fact, the main errors are in the mountain zones (Figure 

3.12). This error is inherited from the global model which showed an important 

underestimation compared with NCEP-NCAR Reanalysis (Fuenzalida et al., 2006). 

Although Fuenzalida et al (2006) proposed that this error was an artefact explained by the 

sea level correction, this difference shows an important effect on the northern rainfall 

patterns. On the other hand, errors showed a temporal pattern Thus, in summer the relative 

errors are lower than in other seasons and and higher in spring months. In fact, in summer 

the largest area showed errors over 100% (Figure 3.12). In summer, Altiplane also showed 

errors less than 100% (Figure 3.12). 
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Figure 3.9.Spatial pattern relative errors (real-estimate)/real for each climatology season. 

a) Winter b) autumn, c) spring, and d) summer. The zone without rainfall was masked 

before computing the relative errors (their values are maximum, i.e. 200) 

 

3.4 Discussion and concluding remarks 
 

In the first section of this paper we discussed the annual and seasonal variability of 

precipitation in the Araucanía Region in Chile under Neutral (not ENSO years), annual 

rainfall 1497 ± 59 mm per year with a positive gradient from North-West to South-East of 

about 4.78 mm km
-1

. Higher rainfall occurs during a period which covers the last portion of 

autumn and winter (May-July, of about 250 mm per month) and lower levels during 

summer and the beginning of autumn (Jan-Mar, 40-50 mm per month). In winter, the 

greatest amount of precipitation is received over the South East of the region (39.25º S, 72º 
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W), whereas in summer the lowest levels of precipitation take place over the North West 

(37.25º S, 72.5º W). Depending on the phase of ENSO year, the amount of annual 

accumulated precipitation either increases (during El Niño years, by about plus 103 mm per 

year) or decreases greater or lower levels of precipitation in winter (+14 mm per month 

during El Niño), and in summer (-3.92 mm per year during La Niña, respectively) when 

compared with Neutral years.  Geographically speaking, a La Niña year is characterized by 

lesser precipitation levels in winter in the South East (39º S, 72º W), where it rains the 

most, and there are greater levels of precipitation in the northern western area of the region 

(37º S, 73º W). This pattern is reversed during an El Niño year. 

This research aims at investigating how these patterns could change during the 

remainder of this century. The predicted changes in precipitation could have a dramatic 

impact on several socio-economic fields, especially agronomy. For example, the 

combination of changes in soil-plant systems (Clark and Lynch, 2009) and an increased 

probability of flooding (Rosenzweig et al., 2002) may cause additional crop damage. 

Besides, accelerated population growth will put increasing pressure on supplies of 

freshwater. Therefore, improved projections are vital if the impact of climate change is to 

be mitigated. Correction of dynamically downscaled projections is a need, especially since 

it is well known that it contains a level of bias (Baigorria et al., 2008). HadCM3 model tend 

to overestimate precipitation variability. Thus, the standard deviation of precipitation over 

1961-1991 period for the HadCM3 simulation is 157 mm, whereas it is 122 for the real in-

situ data. It should be noted that although very little research has been carried out in our 

geographical area, there is a comparison of the quality of the different simulations 

performed by Doherty and Mearns (1999), who evaluated the validity of HadCM3 data 

using an equivalent area located at about the same latitude on the Pacific coast of the 

U.S.A. 

Although closer to the in-situ data, we observed an overestimation of winter rainfall 

of the HadCM3 downscaled by PRECIS dynamical downscaling on the southern-eastern 

zone. This pattern could be explained due to an error inherited from HadCM3 model. When 

we analyzed the whole Chile projection we observed that mesoescale resolution tends to 

produce a smoothed topography condition, which implies that projections estimate less 

rainfall than original projection except on mountain zones. An extreme case can be 

observed in the Altiplane. Here important elevation differences are observed. Moreover, in 

this zone, these differences affect downscaling performance. Both differences imply that 

DGF-PRECIS are not reliable in places near the Altiplano. In fact, we omit the zones 

located in the North of Vallenar (28.5° S, 71.25° W) in our dataset. 

Temporal and spatial distribution of the error suggests that the model projects a 

different anticyclone dynamics from the observed, and an underestimation of ENSO effects. 

Therefore, our results suggest that HadCM3 models project less variability on Southern 

Pacific Anticyclone than the observed in climate records, which are most evident under non 

neutral ENSO conditions. On the other hand, our research is focused on ENSO, but there 

are other phenomena, which affect the climate condition in the work domain such as 

Antarctic Oscillation, which should be included to improve climate change projections. 

Our work Non-neutral ENSO effects on rainfall are understiated, but it not 

invalidated the climate change projections because the typical condition is well-estimated. 
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However, PRECIS climate projections do not reproduce adequately the climate pattern 

under ENSO synoptic condition which could be affect the projected climate variability. 

Although there is an important discussion about the behavior of the ENSO under climate 

change, we do not know if La Niña or El Niño will be more frecuent under climate change 

condition (Rosenlof, 2013; Collins, 2005). Independent of this discussion, it is important to 

include the effect of ENSO on the climate pattern in climate simulation for represent all the 

climate variability. This could be performed using scenarios which model specifically the 

ENSO condition. 

As a consequence, it is probable that projections also overestimate precipitation 

level for the end of the 21st century (1970-2100). Thus, taking into account the rated 

overestimation of precipitation carried out during 1961-1991, both A2 and B2 scenarios 

were corrected. After those corrections, the less critical scenario – in this case B2 - predicts 

a reduction in annual precipitation of about 15.48%, equivalent to 235±87 mm mm per year 

less rainfall than a present Neutral year. Contrarily for the corrected A2 scenario, a decrease 

in annual precipitation of about -458±42.4, that is 30.38% less than a present-day Neutral 

year, was predicted. Seasonally, this decrease is greater during winter (mean of -56.7 mm 

per month and -17.2 mm per month for A2 and B2, respectively) and it is predicted to affect 

particularly the South East of the region (39º S, 73º W). Interestingly enough, in both 

scenarios the final amount of precipitation theoretically reaching the region is less than the 

one received on average during La Niña years from 1961-1991, which is a significant 

decrease. 

The generated database identifies the main uncertainties and improves the current 

provided information for making policies and climate change adaptation strategies. Thus, 

we expect that this work will be an important step to support decision making system and 

design suitable countermeasures to help the Araucanía Region adapt for future climate 

conditions. 
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4. High resolution rainfall projection based on topographical downscaling model 

in Araucania region, Chile. 

 

Abstract 
 

Atmospheric models have been used for assessing the impact of climate change on rainfall 

in water supply, human health, and other issues. These models are performed at mesoscale 

resolution (25 km), which is larger than the optimal to achieve the information requirement 

to face the climate change impacts. To solve the scale problems, statistical downscaling 

techniques were developed. Topographic based model, i.e. statistical models which used 

topographic variables as predictors, are the best alternative in places where there is a lack of 

historical dataset and complex topography, as occur in our study area. One of the most 

prominent models is Precipitation Characterization with Auto-Searched Orographic and 

Atmospheric (PCASOA). The aim of this work is to generate and validate a high resolution 

rainfall projection (1 km of grid size) using PCASOA model. This projection was 

performed in Araucanía region (37°S to 40°S and from 71°W to 74°W), of Chile one of the 

most important cereal crop production area. Our database improved the current climate 

projection in about 20%, mainly in summer, when the downscaled grid bias was <10%. We 

project a decrease in rainfall about 30% mainly in summer and spring. In addition, 

downscaling improved the observation of the orographic rainfall (rainfall differences 

between opposite mountain sides in Nahuelbuta Mountain), detecting a marked differences 

under climate change condition in the western part of the region. 
 

4.1. Introduction 
 

Understanding the changes on rainfall distribution is one of the main concerns for 

mitigating the climate change impact (Hawkins and Sutton, 2012; Piao et al., 2010; 

Hewitson and Crane, 1996). Nowadays, temperature increases affect the evaporation and 

snow reserves (IPCC, 2013; Vicuña, et al., 2011), agricultural areas and food security 

(Schmidhuber and Tubiello, 2007; Patz et al., 2005), among other issues. To estimate the 

long-term impact of climate change, several Atmospheric and Oceanic Global Circulation 

Models (AOGCM) project the future rainfall amounts and distribution. However, AOGCM 

outputs models are produced at low resolution grids (about 300 km of grid cell size), 

whereas police makers and support cropping decisions requires information at local scale 

(<5 km of grid cell size). Downscaling techniques have been developed for solve the spatial 

resolution problem (Wilby and Wigley 1998; Wilby et al., 2004). They are divided into two 

different classes: dynamical and statistical (Wilby and Wigley 1998, Zorita, 2000). 

 

Dynamic downscaling consists of solving a system of partial differential equations, 

where an AOGCM is used for computing boundary and initial conditions. These techniques 

perform a climate model on a specific work domain area to obtain higher resolution fields 

(Räisänen, 2007). The main disadvantage of dynamic downscaling is the high 
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computational cost for its implementation (Schoof, 2012). Some examples are: Purves and 

Hulton, 2000 in England based on UKCIP project; Déqué et al., 2005 in Europe, based on 

several models framed on the PRUDENCE project; Almazroui, 2013 on Arabian Peninsula, 

based on ERA40 database and PRECIS (Providing Regional Climates for Impact Studies)  

model, CREAS (Regional Climate Change Scenarios for South America) for Argentina, 

Uruguay and Brazil (Marengo and Ambrizzi, 2006), and Climate Variability for 21
st
 century 

performed for Chile (Fuenzalida et al., 2006). These projections downscaled climate input 

from global (about 300 km) to mesoscale resolutions (between 50 and 25 km cell grid size). 

Chilean projection produce the DFG-PRECIS database, which involved projection on the 

baseline data between 1961 and 1991 together with A2 (850 ppm of CO2 eq and 3°C for 

the year 2100) and B2 (621 ppm of CO2 eq ppm and 1°C for the year 2100) scenarios for 

2070 and 2100 at 0.25º resolution (about 25 km).This database was obtained by 

downscaling the output of Atmospheric and Oceanic Global Climate Model (HadCM3) 

using a regional climate model PRECIS. 
 

Although these mesoscale climate projections help to understand the changes on 

rainfall pattern, the phenomena which impact the human activities require higher 

resolutions scale. For example, the effect of climate change on the microclimate is a very 

important issue for human health (e.g. Paaijmans and Thomas, 2011); crops system (e.g. 

Sutherst et al., 2011) and species distribution (e.g. Gillingham et al., 2012). Improving 

resolution has been performed using statistical downscaling. It consists of obtaining a 

statistical model between the global-scale data and the local-scale data by fitting a 

mathematical transfer functions (Hanssen-Bauer et al., 2005; Solman and Nuñes, 1999; 

Wilby and Wigley, 1997). Thus, it links known variables (predictors) with output variables 

(predictands) that are normally meteorological records. For performing a statistical 

downscaling, the most common strategy is the perfect prognosis (PP; Rummukainen, 

1997). This strategy includes tree steps: calibration, validation and projection of output 

dataset from the transfer function in order to generate a projected rainfall for each 

meteorological station. PP models are available such as SDSM (Wilby, et al., 2002), or 

CLIMPACT (Benestad et al., 2008) among others. Although this strategy is very much used 

(Linderson 2004; Zagar et al., 2004; Wilby and Wigley, 2000), PP models requires dense 

meteorological station network with long time series records for building a reliable high 

resolution grid. In addition, since climate projections are the same meteorological records, 

there is no independent sample for the validation step. 

 

To avoid the lack of meteorological data records and independent sample 

requirement for validation, other statistical downscaling models have been developed based 

on topographical variables as predictor. One strategy for perform this kind of downscaling 

is distribute the precipitations simulated for a low resolution cells among all the high 

resolution cells inside. This distribution is based on to fit a regression using topographical 

variables as predictors. The most important topographical downscaling model is 

Precipitation Characterization with Auto-Searched Orographic and Atmospheric effects 

(PCASOA) (Guan et al., 2009) that includes variables obtained from a digital elevation 

model (DEM), where elevation, slope and aspects are regarded to improve spatial 

representation of rainfall 
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In this paper, we downscaled a high resolution rainfall projection (1 km of cell grid 

size) over central-southern Chile (37 - 40 °S and 71 -73 °W) from a mesoscale resolution 

rainfall grid (25 km of grid cell size) using PCASOA model (Guan et al., 2009). Thus we 

generate a high resolution rainfall dataset (1km) for baseline conditions which was 

validated using in-situ meteorological records. Based on this validation, we generated a 

high resolution rainfall dataset for the A2 scenario. 

 

We first present a general description of the work domain including main climate 

characteristics (section 2.1). Next, we give details about the PCASOA model (section 2.2).  

In the section 2.3 we give details about the topographical data set and the length and 

localization of the in-situ meteorological data set used here. In section 2.4 we describe the 

downscaling methodology. In the section 2.5 we describe the validation methodology and 

in section (section 2.6) the climate change scenarios downscaling methodology. Results are 

shown in section 3, following the same scheme of section 2 that is climatology downscaling 

(section 3.1), validation (section 3.2) and high resolution climate change projections 

(section 3.3).  Finally, we discuss our results (section 4) and concluding about them in 

section 5. 
 

4.2. Study area description, data set and methodology 
 

4.2.1. Study Area 

 

The study area is located from 37° to 40° southern latitude and from 71° to 74° Western 

longitude. From a topographical point of view, this area is longitudinally crossed by two 

mountains ranges: Cordillera de los Andes (AM) and Cordillera de Nahuelbuta (NM). In 

between, we observed the costal zones (CZ) and Central valley (CV) (Figure 4.1) (Börgel, 

1985) 
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Figure 4.1.Study area digital elevation model (37°S to 40°S and 71°W to 74°W). In the 

figure are also showed the main topographical zone: Cordillera de los Andes (AM), 

Cordillera de la Costa (NM).the costal zones (CZ) and Central valley (CV). Elevation in 

three selected longitudinal profiles are showed in b, c and, d. 

 

        Climate of study area is characterized by a dry season between December and March 

with minimum rainfall varying from 50 to 70 mm per month and a wet season from May to 

September with maximum rainfall of about 250 mm per month. Annual precipitation varies 

between 800 and 1500 mm per year on CV (about 45% received between May and August; 

Rouanet, 1983). Within the seasonal annual temperature cycle, the warmest months are 

from December to February with mean about 15 °C (maximum of 25-27 °C and minimum 

about 10 °C). Winter mean (June to August) temperatures are around 8 °C (with a 

registered maximum and minimum of 12 °C and 4 °C, respectively) (Rouanet, 1983). Note 

that dry season matches with the warmest months showing a Mediterranean climate 

(Rouanet, 1983).The highest rainfall levels occurs in the South East (about 4,000 mm per 

year) and the lowest one in the West coast (about 800 mm per year). In addition, this region 

is affected by El Niño Southern Oscillation (ENSO; Montecinos and Aceituno, 2003). In 

fact, ENSO is one of the main sources of climate variability on the region. This 
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phenomenon generates changes up to -99 mm per month during La Niña phase and +34.3 

mm per month during El Niño, being one of the main regional climate variability sources 

(Montecinos and Aceituno, 2003). 
 

4.2.2 PCASOA model description 

 

PCASOA is based on a multivariate regression using topographic variables as predictor. 

The multivariate regression searches some regional and local climatic settings (i.e. the 

spatial gradient in atmospheric moisture distribution and the effective moisture flux 

direction) that are related with some predictors (i.e. topography), which are used for 

precipitation mapping. The regression is designed to auto-search selected climate and 

orographic processes on an empirical relationship between topographic and meteorological 

variables. Thus, the program fits a statistical model among monthly rainfall and 

topographic variables: northern coordinates (related with latitude), eastern coordinates 

(related with longitude), altitude, slope and aspect (see equation 4.1; Guan et al., 2009). 
. 

655443322110 )( XfXfbXfbXfbXfbXfbbY      
(Eq. 4.1) 

 

where Y is the rainfall, Xf1and Xf2are the Easting and Northing coordinates respectively (in 

UTM projection corrected by a scale factor), Xf3is the altitude (in km), Xf4is the Sine of the 

aspect (degree respect to the North), Xf5 is the Cosine of the aspect (degree respect to the 

North), Xf6is the slope, and b0-b5 are the related coefficients. 

 

Aspect, slope, altitude, eastern, and northern coordinates are derived from a Digital 

Elevation Model (DEM) of the study area. A DEM is a grid which each cells represent the 

Elevation of a specific site. Thus PCASOA uses only a mesoscale precipitation grid and a 

DEM. 
 

4.2.3 Climate dataset and Digital Elevation Model (DEM) 
 

In our work domain there are 86 meteorological stations, 25 belonging to Dirección general 

de Aguas, and 61 to Dirección Meteorólogica de Chile. However, many of them present 

important gaps in the timespan from 1961 to 1991, affecting their representativeness.  For 

solving it, we selected 56 in-situ meteorological stations located in the Region (Figure 4.2), 

using the rule of decade continuous years, or 15 years of non-continuous precipitation 

records. Also, the 10 selected stations used for calibrating the mesoscale DGF-PRECIS 

database where not used in the validation for ensure the independence of the validation 

sample. These criteria were defined to include the records within one Pacific Decadal 

Oscillation, which show an important correlation with the ENSO variability (Newman et 

al., 2003). The remaining 46 stations were used to validate the PCASOA output. 
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Figure 4.2.Meteorological stations location overlapped over a DEM. Gray area show the 

Pacific Ocean 
 

We select a Digital Elevation Model (DEM) from the Global Topography at 30 arc-

second (GTOPO30) project (Harding et al., 1999) downloaded from the United States 

Geological Service (USGS) web site in: 

http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30_info. This DEM 

is a horizontal grid spacing 30 arc-seconds (approximately 1 kilometer) which is projected 

in latitude-longitude. Since PCASOA needs this information in regular grids, it was 

changed to UTM (Zone 18 South). 
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4.2.4 PCASOA implementation 

The first step for implementation the PCASOA model was to obtain the mesoscale rainfall 

grids for downscaling. These grids were obtained from PRECIS model applied to the 

continental Chilean territory between 1961 and 1991 (Fuenzalida et al., 2006). DGF-

PRECIS dataset considered 42 climate variables including photosintetically active radiation 

(PAR), temperature, and rainfall. We consider 108 pixels of 25 km from DGF-PRECIS 

database. The simulated rainfall was validated by comparing the mean of each month with 

in-situ climatology records (1960-1991) for each of the ten selected meteorological stations. 

The DGF-PRECIS database underestimated the rainfall in winter and autumn, but 

overestimated this variable in summer and spring. Thus, the database was corrected by 

computing a monthly ratio between the in-situ and the modeled data. The ratio was 

multiplied by each monthly value of DGF-PRECIS. Therefore, a corrected mesoscale 

monthly rainfall was produced. 

The second step is to identify the significant predictors which model the rainfall. 

PCASOA is based on the relationship between the topography and the synoptic condition. 

The main climate driver of the synoptic condition is the Pacific Anticyclone (PA) which 

location presents a characteristic and periodic interannual pattern. The PA is the main 

climate driver of the continental entrance of frontal systems in the Pacific (Montecinos and 

Aceituno, 2002) affecting the frequency, direction and the intensity of weather frontal 

system. Therefore, topographic effects change based on the P.A variability, which implies 

that we should compute a different set of coefficients of equation 4.1 for each monthly grid. 

Moreover, as PA location follows a periodic pattern, it is expected that some variables 

considered in equation4.1 show a significant effect by the influence of PA, and these 

variables change through the years, but not among years. Since equation 4.1 coefficients 

change throughout the season, we should identify which variables are significant to explain 

the climate variability, which can be selected to simulate the monthly records. Thus, 

downscaling model should be fitted for each climate grid using only the significant 

variables selected for its corresponding climate month.  The variable selection was 

performed using a T-test with 95% of significant level applied to the meteorological station 

climatology. This analysis is including in the same routine of the PCASOA, and test if there 

are significant differences between zero and each coefficient in a regression. T-Test was 

performed for the monthly climate average using the calibrating station as input. The results 

are reported in Table 4.1.  
 
 
 
 
 
 
 
 
 
 
 



 
 

65 
 

Table 4.1.Significance of each variable (* >0.1 ; ** > 0.05, *** > 0.01 ) used in the final 

model (equation 5.1). Xf1 and Xf2 are the Easter and Northern coordinates respectively 

(UTM corrected by a scale factor), Xf3 is the altitude (km), Xf4 is the Sine of the aspect, Xf5 

is the Cosine of the aspect 

 

Month Intersep 

Xf1 

East
1
 

(m) 

Xf2 

North
2
 

(m) 

Xf3 

Elevation 

(km) 

Xf4 

Sin(aspect) 

Xf5 

Cos(aspect) 

Dec *  ***  *** *** 

Jan ***  *** **  *** 

Feb ***  *** ***  ** 

Mar *** *** ***  **  

Apr * *** ***  ***  

May *** *** ***  **  

Jun *** * ** ** ** ** 

Jul ***  *** *** **  

Aug ***  *** *** **  

Sep ***  *** ** ** ** 

Oct *** *** *** * **  

Nov ***  *** ***  ** 

1
X UTM coordinate corrected by a scale factor 

2
Y UTM coordinate corrected by a scale factor 

 

Finally, based on table 4.1, PCASOA fit a model for each climate grid considered in 

our corrected mesoscale rainfall database, using the corresponding for its month high 

resolution (1 km) topographic variable as predictors. Thus, the output PCASOA model is a 

monthly rainfall database for all periods (1961-1991), which is in grid format and 

downscaled at 1 km. 
 
 

4.2.5 Downscaling validation 

 
Validation was performed by comparing the in-situ record and the grid containing in 

PCASOA output, and also in DGF-PRECIS for to quantify how much downscaling 

enhances quality. These comparisons were performed using four statistical methods: (i) 

Roots Mean Square Error (RMSE), (ii) Pearson correlation index (R
2
), (iii) bias (i.e. the 

averages of the difference between the downscaled data and its corresponding in-situ data), 
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and (iv) bias absolute values. Finally, the relative differences of climatologies were 

spatially interpolated through ordinary kriging (Isaaks and Srivastava, 1989) to identify 

spatial pattern of the downscaling error. 
 

4.2.6 Model Projection 

 

The last step of this research was to build a high resolution projected database based on 

PCASOA. Following the methodology presented in Section 2.4, we downscaled the 

corrected DGF-PRECIS database for A2 scenarios for the 21st century, and use it for 

obtaining a high resolution (1 km) projected rainfall for this climate change scenario. Thus 

we constructed a climatology which was analyzed.  

 

4.3. Results 
 

4.3.1 Downscaling validation with climatology 

 

The PCASOA and DGF-PRECIS at 25 km reproduce the main regional climate patterns 

(Figure 4.3). In fact, in Figure 4.3 we recognized the Northern-Southern gradient which 

increased the rainfall to the South, and the typical regional seasonal behavior characterized 

by lower rainfall in summer and higher rainfall in winter. For autumn-winter, PCASOA 

downscaling indeed improved the precision of DGF-PRECIS. Thus, we observed the 

positive relationship between rainfall and altitude, and the effect of valley on rainfall. It is 

interesting to note that PCASOA improved the representation of the characteristic rain-

shadow zone located in the Northern region (about the 5.800.00 S, 700.000 W, UTM 18s; 

37.8°S and 72.7 W) described by Luebke (2008). This gives us some hints about the spatial 

patterns at high resolution shown in Figure 4.3. Due to the high rainfall differences among 

seasons, it was not possible to keep the same color range along the year. 
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Figure 4.3.Comparison between PRECIS (left) and PCASOA (right) outputs at climatic 

seasonal average levels (mm).  
 

In relation to the results of the validation processes, we compared the monthly 

climatologies, i.e. the 48 in-situ meteorological station compared with the PCASOA output 

and with DGF-PRECIS. For these analyses we computed the average biases and RMSE for 

each month considering each comparison as observation. These results are presented in 

Figure 4.4a and 4.4b respectively. Figure 4.4a shows also the standard error computed 

between both models and it corresponds to in-situ data in each month. We noticed in the 

bias (Figure 4.4a) and in the root square of the mean square error (RMSE) (Figure 4.4b) 

that PCASOA reduces the climate errors over nine months, except for February, May and 

July. Comparing DGF-PRECIS with PCASOA scatter plots (Figure 4.4c and 4.4d 

respectively) although R
2
 is somehow lesser in the second case  (8% difference), the slope 

is closer to one (0.59 and 0.8 for DGF-PRECIS and PCASOA respectively) and it 

intercepts closer to zero (39 and 11 for DGF-PRECIS and PCASOA respectively). These 

results suggest that PCASOA improved the climate projection but generated some out-

layers (see Figure 4.4d) affecting the global performance of the correlation. 
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Except during summer, it is possible to observe a positive bias along the year, 

especially in the higher resolution grid. In addition, PCASOA model improves a lot the 

quality of the data. It still tends to overestimate the rainfall means (by more than 20 mm per 

month), but this occurs in autumn (April and May mainly) and only over a month in winter 

(June). For the remaining months, PCASOA improves the rainfall estimation. Also, but this 

overestimation are also observed in DGF-PRECIS database. In fact, PCASOA show a not 

significant improvement in these months. The remaining months, PCASOA significantly 

enhance in the rainfall estimation. Although winter and autumn are the rainiest season, rains 

fall during spring and summer are critical for several productive activities (e.g. agriculture, 

forest, and human water supply). 
 

 

 
Figure 4.4. Computed monthly station averages based on climate averages. In the figure a) 

Bias, b) RMSE, c)Scatter plot of  PRECIS and measures data and   d) Scatter plot of  

PCASOA and measures data and modeled data. In a) Error bars show the standard error, 

in c) and d) solid line shows the bisector (X =Y).  
 

Concerning spatial patterns (see Figure 4.5), PCASOA results show larger errors over high 

altitude zones, but it is inherited from PRECIS model (Fuenzalida, 2006). Also, we note 

that in all cases, the errors are reduced by big amounts (about 200 mm) when they are 

compared with errors found with the low resolution climate field (DGF-PRECIS). For 

PCASOA, these differences are about 15%, (i.e. 300 mm) in wet zones located in the 

Southern-Eastern region (about 38° 60' S, and 72° 00' W, i.e. about 700,000 W, 5,800,000 

S, UTM18s, here it rains about 3,000 mm per year), and about 30 %, (i.e. 250) mm on dry 

locations in the Northern-Western region (about 37° 30' S, and 73° 00' W, i.e. about 

800,000 W, 5,600,000 S, UTM18s, here it rains about 750 mm) zones. The same spatial 

pattern is observed for DGF-PRECIS, but these errors are higher than PCASOA (20% on 

wet zones and 40% on dry zones), and the zone located in the rain-shadow zone (about 

680.000 W, 5.800.000 N UTM 18s; about 37.8 S, 73.0 W) where DGF-PRECIS 
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underestimates the rainfall (about 40%) whereas PCASOA overestimated (about 10%) 

(Figure 4.5a), whereas DGF-PRECIS underestimate about 20%.  
  

The spatial pattern of the error is correlated with the DGF-PRECIS errors. This 

proves that downscaling improves the precision, but not changes the patterns. These 

patterns change along the season. In winter (the rainiest month) HR rainfall was 

underestimated by about 40 mm season
-1

 (about 20%) the dry zone, and the wet zone was 

overestimated by about 100 mm season
-1

 (about 14 %) (Figure 4.5e). The same pattern is 

observed in DGF-PRECIS, but the differences are higher than the downscaled grid. The 

DGF-PRECIS underestimates about 60 mm season
-1

 (about 30%) the dry zone, and 

overestimates about 200 mm season
-1

 (25%) the wet zone (Figure 4.5c). 

 

During summer, (DJF, driest season) we observed different spatial rainfall pattern in 

HR respect to DGF-PRECIS. In PCASOA driest zones rainfall were slightly overestimated 

(differences about 10 mm, 20% of the monthly accumulated precipitation), and the wet 

zone rainfall was underestimated by only 5 mm (0.6% of the monthly accumulated 

precipitation). On the other hand, in DGF-PRECIS dry zone rainfall was underestimated in 

about 10 mm season
-1

 (about 20%), and the wet zone rainfall in about 400 mm (58%) 

(Figure 4.5c). 
 

During spring an overestimation is observed (about 10 mm which correspond to 

10%) in the PCASOA rainfall on the centre zone, and overestimation on the rest of the zone 

(about 50 mm which correspond to 30%, Figure 4.5 b), whereas a not clear spatial pattern 

in the  DGF-PRECIS is seen. Finally, during autumn an overestimation is observed (about 

200 mm, 100%) on all regions which are higher on the eastern-northern zone for both 

models (Figure 4.5d). 
 
 
 



 

70 
 

Figure 4.5. Spatial pattern of PRECIS (left) and PCASOA (right) relative errors ((in-situ-

modeled)/in-situ).a) Annual, b) spring, c) Summer, d) autumn, e) winter 
 

We observed a homogeneous rainfall change pattern on flat zones (between -800 

and -500 mm per year on Valle Central and from -100 and 50 on the Coastal zones) and 

high variability of changes on mountain zones (between -500 to 1,000 mm per year in 

Nahuelbuta range and between -400 to 1200 in Andes range). We suppose that topography 

is related to the downscaling effect. Except for some zones located near the sea, on flat 

zones we observed higher rainfall in PCASOA output than in DGF-PRECIS outputs. On 

Mountain zones, we observed both negative and positive values. Negative values are 

related to valleys located in the East and North-East sides of mountains and hills. Positive 

values are related to high zones and West or South-West sides of mountains.  
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These rainfall patterns are explained by the existence of mountains changing the 

rainfall pattern by the front interaction. For example, Nahuelbuta range produces low 

rainfall in the opposite sea side, and high rainfall on the sea side and on the higher zones. 

This phenomenon is reported by authors and is called orographic rainfall (Luebke, 2008). 

Now, high resolution rainfall is based on a high resolution DEM, which is smoother than 

the low resolution. Therefore, higher rainfall is expected on high resolution than on low 

resolution on valleys. This increase in the rainfall implies that rainfall is more 

overestimated by DGF-PRECIS than PCASOA on higher zones, and that there is a similar 

bias on flat places. 
 
 

4.3.2 Climate change projection 

 

Under climate change condition a decrease is observed on the region rainfall (30%), which 

is higher than reported by other authors (Fuenzalida, 2006; Seth and Rojas, 2003). The low 

resolution model also projects an increase on the rainfall (6%), but a decrease on the central 

zone. Seasonally, we observed a decrease in rainfalls in spring (about 30%, i.e. from 356 

mm to 250 mm, Figure 4.6e) and summer (about 70%, i.e. from 80 mm to 24 mm, Figure 

4.6b), whereas an increase in the rainfall in winter (about 20% from 870 to 1050, Figure 

4.6d) and autumn (about 20%, from 592 to 700, Figure 4.6c). 

 

Our results show important spatial variability. In autumn, a decrease  is observed in 

the rainfall (about 40%) on the West side of the Nahuelbuta range, and an increase on the 

East side (about 80%), whereas it is observed an increase in winter, and a decrease in 

summer and spring in all Nahuelbuta range zone. 

 

The central zone shows a small decrease in the winter rainfall (about 20%), an 

increase in the autumn rainfall (about 50%) and an important rainfall reduction in summer 

and spring (60% and 70 % respectively). These patterns are translated into a reduction on 

the annual cumulative rainfall (about 30%). In our work domain, the Andes range (about 

760.000 W UTM 18s; about 18s, 71º 20'w) shows an increase in the rainfall except for 

summer, which is directly correlated with altitude. Moreover, in the rain-shadow zone a 

decrease is observed in the rainfall (about 10%, from 603 mm to 543 mm) and in the 

Nahuelbuta range the maximum increase is observed on the rainfall in about 48%, i.e. from 

600 to 880. 

 

In our work domain, the rainfall pattern is explained by the location of the mean of 

MPL (maximum pressure latitude, Saavedra et al. 2002), which is a proxy of Pacific 

Anticyclone (P.A) location. Thus, when MPL is located in the northern region, PA covers 

completely the region reducing the rainfall, as it occurs in summer and spring. On the other 

hand, when MPL is located in the South of the region, PA uncovers completely our work 

domain as it occurs in winter. In autumn MPL is located at 38.7ºS, just over the South of 

Nahuelbuta range. The observed climate changes suggest that climate change strengthens 

PA and increases the front frequency. Therefore, in autumn the stronger Pacific anticyclone 

reduces the rainfall on the west side of Nahuelbuta range, but also the most frequent fronts 



 

72 
 

affect the east side of the mountain. The same phenomenon explains the small increase in 

the rainfall on the central zone, when PA does not cover our work domain (winter), and the 

decrease when it does (spring and summer). 

 

The increase in the rainfall on Andes range and the increase on the difference 

between the Nahuelbuta range and the shadow rainfall zone could be explained as an 

increase in the Föhen effect (Barry and Chorley, 1992), which is product of the expected 

increase in temperature, producing an increase of the evaporation. In fact, the highest 

increase occurs on Nahuelbuta range, which is the highest place located close to the Pacific 

Ocean.  

 

During summer an increase (about 800 km
2
) is observed in the area without rainfall 

(Figure 4.6b). Moreover, this season starts in November under climate change condition, 

whereas it starts in December under base-line condition. In addition, the season without 

rainfall ends in March under climate change condition instead of ending in April under 

base-line condition.  

 

Although general patterns are fitted with the in-situ-observation, there are some out-

layers which could be observed mainly on Nahuelbuta range (about 680.000 W, 5.800.000 

N UTM 18s; about 37.8 S, 73.0 W)   and around the shadow-rainfall zone in spring and 

summer. In Figure4.6, we present the differences between climate change and current 

condition.  
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Figure4.6. High resolution relative differences ((projected-base line)/base line, %) between 

climate change projection and current condition a) annual amount, b) Summer, c)autumn, 

d) winter  and e) spring 
 

4.4. Conclusion and remarks 
 

We developed a 1 km high resolution climate dataset for current and projected rainfalls. 

This dataset was developed using a topographical model based on topographical variables. 

This downscaling does not only enhance the projection in about 20%, but it also increases 

the model precision (from 25 km to 1 km) when there are insufficient climate dataset and/or 

less computational power than it is used for long term high resolution climate model. In 
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fact, we proved that this technique is successful even in places with few meteorological 

stations. 

 

 PCASOA shows a better performance than the original PRECIS outputs in 

practically every month. The highest improvements are observed in spring, and in June (the 

highest rainfall month).  In summer high resolution model tends to reduce the bias in 17%, 

but RMS is similar. We observed important changes when comparing low resolution with 

high resolution outputs. These differences are larger in complex topography zone, mainly 

on the zones affected by orographic rainfall, and on the Andes ranges. In fact, we observed 

a change of 10% on rainfall shadow zone, whereas this zone is not observed in DGF-

PRECIS. It is important to remark that downscaled grid represents the same general pattern 

than DGF-PRECIS, but the increase of the resolution accentuates the differences allowing a 

better observation of the patterns. 

  

Under climate change condition, we expected a general decrease on rainfall, but 

there is an important spatial variability. Our result suggests an increase in the front 

frequency due to increase in the evaporation as consequence of climate change, and the 

increase of blocking due to strength of Pacific Anticyclone. Besides, we expected an 

increase on the rainfall on the zone with the driest summer. Resolution increasing shows 

details that we are not able to observe at mesoscale resolution. As example, we observed a 

change of 10% on rainfall shadow zone, whereas this zone is not observed on mesoscale 

resolution model.   

 

We found only two climate change projections with similar output resolution which 

were developed by Gropelly et al (2012) and Hijsman et al., 2005. The first dataset is at 2 

km of resolution and was developed using a random-cascade approximation on Oglio river 

watershed. These authors obtained a good reproduction of spatial and temporal pattern with 

errors of about 4%. The other works another work with project climate condition is the 

World-Clim database (Hijsman et al., 2005). This database projects several AOGCM 

outputs from their original resolution to 30 seconds (about 1 km) for the entire world. This 

database shows only the climatic averages and there are a few references about their 

performance. Both are performed using topographic approximation proving that this 

method is a promising strategy for improving the climate projection, mainly in complex 

topography zones.  

 

These climate datasets are an important improvement, which could be used for 

several issues related to climate change impact assessment, such as agronomy, habitat 

suitability, water supply and human health in places with low dense meteorology record on 

the region. In fact, the characteristic rain-shadow on the Northern region, the gradient of 

less rainfall-high rainfall observed from north-west to South-East, and the valley effect on 

rainfall are  observed.  This zone is an important place for Chile from an agricultural view 

point. Another issue which we can investigate based on high resolution projection is 

microclimate indeed assessing the impact of climate change of them. Since they are very 

valuable zones for agriculture, forest activity, and human health, microclimate research is 

an important challenge. One of the main applications for this database is assessing and 

mitigation of climate injuries on agricultural systems. In fact, the best performance of 

PCASOA model was during spring and summer which matched with the crop-season. In 
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fact crop research requires a dense network of meteorological stations (Mitchel and Jones, 

2005), or high resolution climate in order to produce optimum simulation data (Baron et al., 

2005; Mearns, 2003; Tsvetsinskaya, 2003), and there are a few papers referring to the of 

use high resolution grid for assessing the impact of climate change on crop systems.  
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5. Projection A2 climate change scenario using high resolution grid cell on crop 

yield of winter wheat in Araucanía region. 

 

Abstract 

 

Several authors have projected a reduction in the food security due to climate change, 

which has been evaluated using climate msoscales (e.g. 25 km grid) models coupled with 

crop models (CCM). However, crop models have been designed for evaluating 

environmental condition at local scale, whereas climate models output are at low resolution. 

For solving this problem downscaling techniques are proposed. We project a crop yield 

under climate change (A2 scenario, the most extreme, i.e. 850 ppm of CO2 eq and 3°C for 

the year 2100) based on downscaled high resolution projection (1 km). Climate projection 

was obtained from the regional climate model (25 km) DGF-PRECIS, which was corrected 

using in-situ records and downscaled using a topographic approximation (Precipitation 

Characterization with Auto-Searched Orographic and Atmospheric, PCASOA). We 

projected the winter wheat (Triticum aestivum, cv. Winter-Europe) yield growing in the 

Araucanía Region (37-40 S and 71-73 W) leaving the soil characteristics constants. The 

yield was increased 52.5% compared with the base line (1961-1991). Yield changes are 

explained and discussed on CO2 base. A high spatial and temporal variability is observed 

which increases under climate change scenarios. We propose earlier seeding date in dry 

zones and later seeding date in wet zones together with adaptation strategies of winter 

wheat as climate risk countermeasurements. . 

Key words: Climate Change Impact, Downscaling, Crop Modeling. 

 

5.1. Introduction 

 

Nowadays, global warming is an important issue affecting crop yields as envisaged by the 

International Panel of Climate Change (IPCC, 2007; 2007). One of the main concerns is the 

climate impact on food security and worldwide crop production (Seo and Mendelsohn, 

2008; Slingo et al., 2005). To understand the vulnerability of crop production under climate 

change scenarios considering both climate changes and CO2 increase, the most used 

technique is the crop-climate modeling approach (Meza et al., 2009; Challinor et al., 2009; 

Thomson et al., 2005), i.e. to perform a crop model using projection based on a climate 

change input dataset. A good yield projection may guide research line for the choice of new 

cultivars, to identify required inputs, and to evaluate agronomic counterparts to allow crop 

adaptation to the new environmental conditions (Challinor et al., 2009).  

Crop simulation models allow a systemic evaluation of weather, soil data and 

management variables on crop responses. These models are important tools to assess the 

climate change impact on local weather conditions along with other environmental 

interactions.  Dijkstra et al., (2010) used a crop simulation model for estimating the 
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combined effect of elevated CO2 and global warming in semiarid grassland in a mesic 

Aridic Argiustoll soil. They found that soil inorganic nitrogen (N) pool decreased 

significantly under elevated CO2 by increasing microbial N immobilization, whereas soil 

inorganic N and plant N pool increased significantly with the increasing temperature.  

Steduto et al., (2009) quantified the water impact on the crop yield based on the Aquacrop 

model and assessed the main phenological processes which were affected. Rosenzweig et 

al., (2002) evaluated the impact of flood on crop (Maize) using CERES model and they 

estimated the losses by crop damage in US$3 billion per year in USA.   

 On the other hand, climate models are used to estimate the effect of greenhouse 

gases (GHG) on climate systems and projection on changing conditions.They simulate the 

global atmospheric state based on air flows generated by the warming differential of solar 

radiation on the earth surface (Zorita, 2000). These models simulate the state of the 

atmosphere on the entire world linking ocean dynamics, atmosphere activity, ice covering 

land, and biology-soil carbon cycle. Since they simulate the whole atmospheric and oceanic 

systems, they are called Atmosphere and Oceanic Global Circulation Models (AOGCM) 

(IPCC, 2001; 2007).  For simulating the future climate conditions, AOGCM require the 

future greenhouse gas concentration. The IPCC defined GHG emission scenarios based on 

expected social and policy behaviors (IPCC 2001; 2007), projecting the future 

concentration of GHG and its climate consequences. The scenarios are classified into two 

groups: high and moderate emissions, namely A and B scenarios, respectively. Among these 

scenarios, A2 is the most used for assessing the climate change impact representing the 

high level of carbon emission (850 ppm of CO2 eq and 3°C for the year 2100) and B2, 

representing moderate level of carbon emission (621 ppm of CO2 eq and 1°C for the year 

2100) (IPCC, 2007). These scenarios are commonly used for assessing the climate change 

projected for the model output in crop modeling (Soussana, 2010). In addition, IPCC 

(2007) defined a base-line condition for giving a reference to make comparisons. Thus, 

baseline is defined with the atmospheric condition observed between 1961 and 1991, which 

are driven by a CO2 concentration of 330 ppm.  

 One of the main problems for crop projection response is the scale resolution of the 

climate data generated by AOGCM models. There are important differences between low 

resolution climate model output (grid cell size of 200-300 km) and local climate estimation 

(pixel size of 0.5-1 km), which generate uncertainties on crop projections (Challinor et al., 

2009; Baron et al., 2005; Tsvetsinskaya, 2003). Mearns et al. (2003) reported changes in 

about 25% in spring rains when AOGCM outputs (pixels about 400 km) are compared with 

mesoscale climate models (50 km grid cell size), which imply higher differences in the crop 

such as downscaling techniques projections (up to  20% differences on crop yield). 

However, optimized protocols have been developed, which translate low resolution climate 

grid to the higher local data (Hanssen-Bauer et al., 2005; Wilby and Wigley, 1999).Two 

kinds of downscaling techniques are the most used: statistical and dynamic (Zorita, 2000). 

The statistical downscaling consists of a model (transfer function) fitted to a data from 

global- to local-scale climatic variables (Hanssen-Bauer et al., 2005; Solman and Nuñes, 

1999; Wilby and Wigley, 1997). Consequently, dynamic downscaling is based on 

atmospheric models nested into AOGCM (Prudhomme et al., 2002). The AOGCM output is 

used as boundary conditions for regional models normally scaled from 200-300 km to 

mesoscale (50-20 km of grid cell size; Räinsänen, 2007). For instance, PRUDENCE is 
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projected over Europe (Déqué et al., 2005) and CREAS model is projected over South 

America (Marengo and Ambrizzi, 2006).  

In Chile, a dynamic downscaling was carried out over the complete territory 

(Fuenzalida et al., 2006) based on Hadley Centre Coupled Model (HadCM3) which was 

downscaled using a  model called Providing Regional Climate for Impact Studies 

(PRECIS). The national database called DGF-PRECIS involved the projected baseline 

climatic data (25 x 25 km) of A2 and B2 scenarios for 2070 and 2100 for air temperature (2 

m), rainfall rate (mm s
-1

), solar radiation (PAR, Watt m
-2

), among other atmospheric 

variables. Moreover, DGF-PRECIS involved simulations for the base-line condition (from 

1961 to 1991), which can be used for representative current conditions. These projections 

expecte temperature would increase all over Chile, and rainfall decrease from northern 

regions (between 18º - 30º S) to central-southern regions (between 30º - 40º S). Such 

reduction in rainfall would increase the potential evapotranspiration of crops and lower 

snow reserves in the costal and Andean range representing a significant decrease in water 

supply in the country.. Although DGF-PRECIS database is an important progress for 

understanding the climate change effects on Chile, its spatial resolution is not appropriate 

for local assessments scale (1 x 1 km) as requires agricultural crops.   

In the present study we assessed the impact of Chilean climate change crop yield at 

local scale in winter wheat (Triticum aestivum L). We use nested statistical downscaling 

based on topographic approximation technique (Rupp et al., 2012) and random cascade 

algorithm (Grupta and Waymire, 1993). This allows us to obtain the projected climate for 

the time spam 2070-2100 under climate change scenario (IPCC, 2007) using topographical 

variables as predictors (Guan, 2009a). The work domain was Araucanía Region (35º35' - 

39º37' S, and 71º to 73º W). We selected a winter wheat crop because it represented 33.7% 

of the total wheat production in Chile in just 35.2 % of the total agricultural land in this 

Region (about 1.7 millions) (INE, 2007). Winter wheat is widely cropped by farmers and it 

is commonly sown in volcanic soils close to the Andes range. The volcanic soils in 

Southern Chile represent 5.1 million ha and most agricultural soils from Araucanía are 

Andisols Alfisols and Ultisols (Matus et al., 2006). To our knowledge, there is no paper in 

Chile that evaluates a crop projection yield response to 2070-2100 for A2 and B2 scenarios 

respectively (IPCC, 2007) at high resolution sacle (1 km). Since it represents the most 

extreme condition, and allows appreciate more clearly the differences, our work is based on 

A2 scenario.  

The specific goals of the present paper were: (i) to downscale climate conditions 

generated by DGF-PRECIS database from 25 km to 1 km considering the topographic 

downscaling technique and topographical variables (Guan et al., 2009b). This model 

includes the effect of topography and elevation and, (ii) to project the winter wheat crop 

yield in the Araucanía Region (1 km) under A2 and baseline scenarios from IPCC using 

CERES crop simulation model(Decision Support System for Agrotechnology Transfer 

Package, DSSAT). 
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5.2 Methodology 

5.2.1 Climate dataset 

The first step of our research was to select in-situ meteorological station in order to 

calibrate the mesoscale database (DGF-PRECIS) and validate the high resolution climate 

database (Precipitation Characterization with Auto-Searched Orographic and Atmospheric, 

hereafter PCASOA). For instance, we required rainfall, photosynthetically active radiation 

(PAR), and temperature. We selected 56 meteorological stations located in the Region 

which showed a complete rainfall records from 1961 to 1991 (see below), whereas a few 

stations (5) presented other climate records such as PAR and temperature. Mesoscale 

database and PCASOA model were calibrated using ten selected stations, based on 10 

continuous years or 15 years of non-continuous precipitation records within the periods 

1961 and 1991. These criteria were defined in order to include the records within one 

Pacific Decadal Oscillation, which is the main source of climatic variability in the Region 

(Newman et al., 2003). 

Mesoscale database was obtained from DGF-PRECIS database. This database was 

created in 2006 to simulate the impact of climate changes from dynamic downscaling at 25 

km grid from HadCM3 model (300 km) (Fuenzalida et al., 2006). The DGF-PRECIS 

database considered 42 climate variables including PAR, temperature and rainfall. The 

simulated rainfall was validated by comparing the mean of each month with in-situ 

climatology records (1960-1991) for each of the ten selected meteorological station. DGF-

PRECIS database underestimated the rainfall in winter and autumn, but overestimated this 

variable in summer and spring. Thus, the database was corrected by computing a monthly 

ratio between the in-situ and modeled data. The ratio was multiplied by each monthly value 

of DGF-PRECIS. Therefore, a corrected monthly rainfall was used. Since the temperature 

and solar radiation could not be validated, these variables were used directly from the 

original database.  

The corrected DGF-PRECIS was downscaled from 25 km to 1 km using 

PCASOAmodel (Guan et al., 2009). This is a statistical model based on regression rainfall 

mapping at 1 km grid cell (Guan et al., 2009) using topographic significant variables 

(coordinates, elevation, slope and aspect). To run the PCASOA model we need (i) the 

corrected DGF-PRECIS database as ASCII list format at UTM projection coordinates and 

(ii) a DEM model in ASCII grid format projected in the same geographical area. Detailed 

knowledge to run the model was also considered as indicated by Guan et al (2009). The 

DEM were obtained from the Global Topography at 30 arc-second (GTOPO30) database 

(Harding et al., 1999) for the Araucanía Region. This consists of 30 arc-second (about 1 

km) altitude maps obtained from radar satellite records. The PCASOA was calibrated by 

fitting a multiple regression model using topography characteristics as independent 

variables (x) and the corrected DGF-PRECIS rainfall grids as dependent variable (y). Only 

the significant topographical variables (< 0.05) were considered for the parameterization of 

the equations. The output PCASOA model was the rainfall grid downscaled at 1 km 

impacted by significant topographical variables.  

 The downscaled rainfall records were validated by comparing the climate average of 

the remaining 46 meteorological stations records. In general, the validation showed a 
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positive bias through the year, except for summer season. However, this bias is less than 30 

% of recorded rainfall, and less than 15% in the growth season (data not shown). This error 

should be assessed with respect to the crop modeling impact, but it is comparable with 

other models validated in similar topography zones (Diaz et al., 2010). 

 Crop model requires a daily step hence we required to project the monthly term 

projection. For performing it, we fitted the monthly data using the stochastic weather 

generator climate generator (CLIMGEN, Thimgen et al., 2007) which uses simple 

algorithms to generate a random variable with the same probabilistic distribution functions 

for the simulated meteorological data (Wilk and Wilby, 1999). The CLIMGEN uses 

Markovian chains to generate the rainfall, and two sinusoidal functions (one for dry days, 

and other for wet days) for temperature and solar radiation. Based on CLIMGEN model, we 

generated a time series of 50 years for each meteorological station. Each of them simulates 

temperature, rainfall and solar radiation under base line and A2 scenarios. The generated 

rainfall dataset (commonly called synthetic time series) was validated for avoiding the 

cumulate error of all processes. Validation was performed based on a test, which compared 

the observed climatology (i.e. the averages of the monthly rainfall during the whole 

considered period) computed for each in-situ meteorological station with the computed 

synthetic climatology based on the corresponding grid cell at  high resolution grid 

(PCASOA) using CLIMGEN. The comparison test was performed by a Standardized Major 

Axis analysis developed by Warton et al., (2006). This method was used to examine 

bivariate relationships among climatic properties. This package computes standardized 

major axis (SMA), which minimizes variance from the line in both dimensions, x and y. in 

contrast to least squares (or “model I”) regression, (Warton and Weber 2002; Sokal and 

Rohlf 1995). This is important when primary concerns are the slope and/or interception of a 

relationship, rather than a significant correlation or predicting one variable from another. 

Use of least squares regression will give misleading estimation of the slope of such 

relationships when correlation coefficients are low. For performing the crop simulation we 

selected the meteorological stations which satisfy three criteria: itsR
2
>0.6, its slope is not 

significantly different to 1 (p<0.05), and its intercept is not significantly different from zero 

(p<005).  Thus, we obtained 28 in-situ meteorological stations, which satisfy these criteria 

(Table 5.1). 
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Table 5.1.Standardized Major Axis analysis results. Gray rows show the selected station. 

Station R2 P* Slo** Int.*** P Slo p Int. Station R2 P* Slo** Int.*** P Slo p Int. 

Angol (DGA) 0.79 0.00 1.07 -10.56 0.66 0.60 Loncoche aeródromo        0.81 0.00 0.75 23.79 0.06 0.31 

Angol (Esc Norm)          0.38 0.03 0.91 -16.68 0.72 0.58 Los Sauces (EAP0 DOS)     0.52 0.01 1.27 -1.71 0.29 0.93 

Angol (Los estanques)     0.20 0.14 0.85 -20.20 0.59 0.57 Los Sauces (Sendos)       0.12 0.28 0.98 -10.77 0.94 0.64 

Collipulli (DGA) 0.82 0.00 1.64 -4.73 0.00 0.87 Los Sauces Fdo (Ofic)     0.44 0.02 1.14 -12.05 0.59 0.59 

Cunco (DGA) 0.88 0.00 1.21 -8.04 0.12 0.76 Manzanar (DGA) 0.91 0.00 1.35 -23.09 0.01 0.44 

Curacautin (DGA) 0.96 0.00 1.34 -7.00 0.00 0.66 Mulchen (Riego)           0.60 0.00 1.60 -21.80 0.04 0.62 

Curarrehue (DGA) 0.93 0.00 1.43 -30.61 0.00 0.26 Nacimiento                0.79 0.00 1.10 -16.91 0.52 0.54 

Cerro Nielol (DGA) 0.98 0.00 1.35 -7.87 0.00 0.29 Nueva Imperial            0.80 0.00 1.87 -16.89 0.00 0.42 

Carahue                   0.78 0.00 1.06 3.51 0.70 0.79 Pueblo Nuevo (DGA) 0.94 0.00 1.42 -10.02 0.00 0.45 

Carillanca Campex         0.61 0.00 1.19 -2.56 0.39 0.94 Puerto Saavedra (DGA) 0.68 0.00 1.48 -21.19 0.05 0.48 

Central Pullinque         0.60 0.00 1.03 5.46 0.87 0.91 Padre de las Casas        0.73 0.00 1.31 -16.30 0.13 0.56 

Contulmo                  0.83 0.00 0.85 3.39 0.27 0.89 Panguipulli               0.73 0.00 0.97 20.74 0.83 0.58 

Curaco (balsa)            0.80 0.00 1.02 -11.17 0.90 0.74 Purulon                   0.85 0.00 0.95 1.19 0.67 0.96 

Curanilahue               0.93 0.00 1.17 -28.81 0.10 0.16 Quecherehua (DGA) 0.92 0.00 1.44 -36.74 0.00 0.16 

El Morro (DGA) 0.91 0.00 1.32 -21.16 0.02 0.47 Quillen (DGA) 0.98 0.00 1.73 -24.11 0.00 0.02 

El Vergel (DGA) 0.83 0.00 1.27 -10.78 0.10 0.50 San José dela Mariquina 0.82 0.00 0.71 21.21 0.03 0.19 

El Tambillo               0.61 0.00 1.27 -18.71 0.25 0.61 San Gerardo               0.72 0.00 1.45 5.93 0.04 0.86 

Freire (DGA) 0.86 0.00 1.28 -16.21 0.06 0.49 San Luisa Meluen          0.86 0.00 1.61 -17.69 0.00 0.43 

Freire Campex 0.91 0.00 1.12 3.63 0.26 0.83 Santa Adela (fundo)       0.75 0.00 0.87 11.13 0.40 0.75 

Freire Sendos 0.98 0.00 1.27 -4.42 0.00 0.59 Santa Barbara             0.70 0.00 1.35 -17.58 0.11 0.65 

Flor del Lago             0.73 0.00 0.77 14.97 0.14 0.67 Temuco (Maquehue)         0.71 0.00 1.47 -22.90 0.04 0.45 

Galvarino (DGA) 0.97 0.00 1.55 -9.06 0.00 0.29 Vicun (DGA) 0.95 0.00 1.39 -19.46 0.00 0.23 

Granja V Hermosa          0.67 0.00 1.42 -22.78 0.08 0.42 Villarrica (DGA) 0.93 0.00 1.00 2.87 0.98 0.87 

Lautaro (DGA) 0.95 0.00 1.46 -23.54 0.00 0.10 Victoria (Oficina0 FACH)  0.88 0.00 1.42 -18.23 0.01 0.42 

Llafenco (DGA) 0.97 0.00 1.08 -40.35 0.19 0.06 Vilcun                    0.72 0.00 1.24 -11.61 0.23 0.75 

Los Laureles (DGA) 0.93 0.00 1.14 -9.38 0.14 0.62 Villacura dimilhue        0.76 0.00 1.40 -23.27 0.05 0.54 

Lumaco (DGA) 0.96 0.00 1.78 -24.51 0.00 0.06 Villarrica                0.82 0.00 1.01 -11.69 0.93 0.71 

Lago Caburga (DGA) 0.95 0.00 0.64 32.00 0.00 0.05 Pichoy 0.84 0.00 0.56 19.55 0.00 0.20 

Lautaro (DOS)             0.70 0.00 1.27 -7.88 0.20 0.80        
* 

P-value of the regression 
**

 Slope of the regression 
***

 Intercept of the regression 
 

5.2.2 Crop Model 

The crop response to change climatic scenario A2 was estimated by using the Decision 

support system for agro technology transfer package (DSSAT) version 4.0. (Jones et al., 

2003; Jones and Thornton, 2003). The DSSAT contains several models such as CERES 

(mainly for cereals) and CROPGRO (for legumes). DSSAT models are the most used 

software for estimating the climate change impact on crop system (Meza et al., 2008; Long 

et al., 2006; Jones et al., 2003). This model allows manipulating 23 input parameters such 

as CO2 concentration, plant nutrition, irrigation schedule, and plant varieties (Jones et al., 

2003). Each cultivar is defined by genetic coefficient, i.e. coefficients which drive the 

responses and interactions with environmental and management conditions (Pabico et al., 

1999). In our case, we used Winter-Europe cultivar, which is defined by seven coefficients: 

Vernalization days (60 days), Photoperiod effect (75 days), grain filing duration (500 °C 

degree days base 10 °C), kernel number (30 units kg
-1

), kernel average weight under 
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optimum condition (40 mg), stem and spike dry weight at maturity (1.5 g), and phyllochron 

interval (95 °C degree days base 10 °C).  

The CERES crop model also requires some initial parameters which are defined by 

the farmer practices, such as dates and methods of fertilization (phosphorous and nitrogen), 

irrigation and planting, deep planting and density, row spacing and stubble incorporation. 

Since the present study focused on determining the effect of climate grid cell size based on 

the simulated grain yield, we fixed soil data obtained from the generic soil default in 

DSSAT (IB00000002). For the simulation, phosphorous and other nutrients in soils were 

not limited, except for nitrogen, which was not considered (Angulo et al., 2013; Palusso et 

al., 2011). The CERES model was previously validated by comparing the observed and 

simulated winter wheat yield in two season years (2008 and 2009) seeded in an experiment 

carried out at the Experimental Station (38º50 S, 72º41 W) from Universidad de La 

Frontera. In these experiments we seeded winter wheat (cv. Kumpa) under unlimited 

phosphorous and 5 levels of nitrogen fertilization (urea) including a control without 

nitrogen. We also considered other experiments (1988-2007) of non-nitrogen fertilizer 

winter wheat across the region (Campillo et al., 2010; Campillo et al., 2007; Rouanet, 

1994). Model showed non-significant differences with the experiment (Figure 5.1). 

Figure 5.1. Average of observed (1988-2007) winter wheat yield field experiments from 

Vilcún (n=6), Maquehue (n=14) and Angol (n= 15) (see Fig 1) representing the flat 

topography zones (FTZ) and complex topography zones (CTZ) in Araucanía Region of 

Chile  as compared with the simulated (DSSAT) winter wheat yield average (1961-1991)in 

the same locations. Bars represent standard error of the mean. 

 

 The simulations were performed based on the local climate generated by 

CLIMGEN. We evaluated three sowing dates: April 1, May 1, and June 1), and irrigation 

was not considered as long as the common practices are not irrigated in most southern 

volcanic soils. However, we did not consider nitrogen applications and optimal 

phosphorous as fertilization. The plating methodology was seeding using 250 plants m
-2

 

and 16 cm row spacing.  
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To estimate the climate change impact on crop response we performed the model for 

the baseline (BL) condition and for A2 condition, and we compared their yield at 

physiological maturity. For separating climate and CO2 effects, two dummies conditions 

were also included in this analysis: baseline with A2 expected CO2 concentration (800 CO2 

ppm BL-800), and A2 with baseline CO2 concentration (330 CO2 ppm, A2-330). Fifty 

simulations were performed for each climate condition and we tested significant differences 

using a t-test (95% of significant level) in all cases. 

To assess the impact of climate change on crop systems including the expected 

variability, we estimated crop yield exceedance density probability function under both, 

baseline and A2 conditions. Crop yield exceedance density probability function is a curve 

representing the probability of obtaining yields higher than a giving value (Piechota et al., 

2001), and it is estimated by equation 5.1.  

 
1


N

n
Pex (5.1) 

Where Pex is the exceedance probability for a yield, n the position of the yield in a 

sorted list from the lowest to the highest and N is the total number of data. This analysis 

was conducted for the yield of winter wheat crop to look at the pattern across the climatic 

information and find the most impacted area for the dry and wet condition. 

5.2.3 Spatial projections of baseline and A2 crop yield 

One of the main advantages of performing adownscaling is the possibility of improving the 

precision of yield estimation. For analyzing the crop yield changes spatial pattern, we 

mapped the differences on crop yield, rainfall, temperature, and solar radiation modeled for 

baseline and A2 scenario. These analyses were performed based on the selected station 

(Table 5.1) and we plotted the yield differences obtained from our simulation using spline 

interpolation (Bosque, 1992). This interpolation method was applied using Arc-Gis 9.2 

(Redland California, U.S.A.). 

5.2.4 Yield behavior in temperature-rainfall hot-map 

Finally, to investigate the crop yield response under different climate conditions and assess 

the sensitivity of crop yield to climate changes, we estimated the yield crop response 

surface plot (temperature - rainfall hot-map). This analysis consists of a surface plot, which 

represents the crop yield in a color scale with respect of the season average temperature (x 

axis) and the season cumulated rainfall (y axis), respectively. Thus, we interpolated all the 

data output using the inverse square of distance algorithm (Bosque, 1992).  
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5.3 Results 
 

5.3.1 Crop performance 

We observed a yield increase under climate change conditionsA2. This yield increase was 

observed even when comparing the impact of climate change under the same CO2 

concentration (Figure 5.2). This fact suggests that CO2 concentration and climate condition 

under A2 scenario increases crop yield. This effect is observed under all seeding dates, but 

the yield increase is higher when we consider an earlier seeding date (April 1
st
) in dry zones 

(Angol)and later (Jun 1
st
) seeding date in wet zones (Cunco)  

 

 

Figure 5.2.Crop yield (Mg ha
-1

) under base line (Bl) and climate change conditions (A2) in 

two model zones: a) Angol and b) Cunco. c) crop yield comparison considering three 

seeding dates. (a) April 1
st
, (b) May 1

st
, and (c) June 1

st
. Error bars represent the standard 

error computing based on the 50 synthetic years of simulation. 

 

Although an increase is expected on crop yield, we observed an important increase 

on the yield variability, which changes among different sites and is larger in dry zones. For 

example, in Cunco we observed an increase on the variation coefficient from 7.8% to 

14.5% whereas in Angol the variation coefficient is from 14.1% to 14.7%. However, there 

is a significant decrease of the low yield probability under climate change condition (Figure 

5.3).  

 



 

86 
 

 

Figure 5.3. Crop yield exceed likelihood under climate change condition and under 

baseline condition on two model zones (Cuncoon the leftside and Collipulli on the right 

side). We considered May 1
st
 as seeding date.  

 

In the region, crop yield changes range from 92% to -128 %.  In the northern and western 

zones of the region a yield increase is observed on the crop yield, whereas in zones located 

in the southern zone of the region and an increase is observed close to thesea.  Thus, the 

total yield effect is an increase about 52.5% (Figure 5.4).  
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Figure 5.4. Crop yield differences (%) between current and future ((A2-Bl)/Bl) conditions. 

We also showed the meteorological station used in the interpolation.  

 

5.3.2 Yield behavior in temperature-rainfall plane (hot-map) 

A hot-map is a plot with represents the yield (color scale) respect two variables: 

temperature (X-axis) and rainfall (Y-axis). Thus, it allows identifying the yield pattern 

respect the rainfall and temperature changes. Although it is expected that crop yield is 

directly related to rainfall, higher yields are observed in the lesser rainfall zone of the hot-

map. Thus, climate change causes the simulates crop yield get closer  to the “high yield 

values”, which suggest that crop system will be less sensitive under climate change 

condition (Figure 5.5). CO2 values affect the yield in the rain-temperature plane. In fact an 

increase is observed in the “high yield” area.  
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Figure 5.5.Crop yield (Kg ha
-1

) in the Rainfall – Temperature hotmap for a) 800 ppm of 

CO2 and b) 330 ppm of CO2. Arrows show the vector which bridges current (foot) and 

projected (head) rainfall and temperature means. Rainfall values are divided by 500 for 

scaled the values. 

 

5.4 Discussion 
 

Our work is a very high resolution projection of crop behavior under climate change 

condition, which is a less explored way for assessing climate change impact on crop 

modeling. We found only two papers that use a very high resolution grid, i.e. less than 10 

km for crop projection in UK (Semenov, 2007). In Chile, where the work was performed, 

there is no paper on those projections. Semenov (2007) used the United Kingston climate 

impact projection (UKCIP) database (50 km of grid cell size), which was downscaled by a 

topoclimate regression and interpolation with irregular triangulation network algorithm. 
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Zhang et al (2005) worked out HadCM3 projection in Oklahoma downscaling climate 

likelihood curves to site-specific climatic variable records. 

 Some crop projections at mesoscale (25-50 km) have been developed in Chile. For 

instance, Meza and Silva (2009) assessed the dynamical adaptation of farmer to climate 

change condition. Besides, Sauvinet et al., (2010) developed a high resolution rainfall 

climate change projection using Statistical Downscaling Model (SDSM, Wilby et al., 

2002), a model based on regressions with modeled meteorological drivers (surface 

pressure, geopotential high, temperature and humidity at atmospheric high levels) in 

Chilean arid zone for assessing the changes on watershed.   

 The results indicated that in Araucanía Region winter wheat yield increased in about 

50 % after 100 years of simulation and our results disagree with those presented by Meza 

and Silva (2009) who indicated a decrease in 20% on winter wheat sowed in August in 

Temuco. These differences were explained by the selected varieties which present a long 

cycle (we used a variety with seeding date in May) mitigating the effect of a drier summer. 

Although under climate change scenario the general trend is to decrease wheat yield, our 

results are consistent with climate zones, which are similar to our work domain. For 

example, Mearns et al., (2003) reported an increase in 14% of the winter wheat yield on 

Pacific Coast USA simulated under 540 ppm of CO2 concentration with consistent climate 

change condition. 

 Dummy variable experiments (BL-800 and A2-330) suggest that yield increase is 

explained mainly by CO2 increase, but weather effects increase crop yield itself. This fact 

agrees with the temperature-rainfall hot-map, which shows higher yield values under A2 

CO2 concentration. The positive relationship between CO2 and yield and its effect of 

mitigating climate injuries have been also reported by Maerns et al (2003) and Meza and 

Silva, (2009). Moreover, hot-map shows a translation from “low yield dominated area” to 

“high yield dominated area”. Thus, an increase in the yield is expected as general trend. 

These changes on the yield variability are confirmed by the exceeding probability curves. 

We observed an inverse relationship between rainfall and crop yield in the region 

(see hot-map) increasing crop yield under climate change condition. This result could be 

explained by nitrogen lixiviation. In fact, in a non- limited nitrogen experiment we 

observed the opposite pattern, i.e. an increase on the crop yield when rainfall is higher. This 

phenomenon could be mitigated on volcanic soils, as they show higher levels of organic 

nitrogen (Nanzyo et al., 1993). This is not investigated in our work and we did not find 

research on this issue, the effect of soil properties on climate change impact mitigation is an 

important future prospect. On the other hand, it is expected that a later seeding date could 

mitigate the excessive rainfall in wet zones, whereas an earlier seeding date allows collect 

rainfall in April in dry zones. In fact, the maximum yield was observed in the earlier 

seeding date in Angol, and in the later seeding date in Cunco. 

     As it is showed in Figure 6.6, a high spatial variability is observed. In the northern 

zone it is expected an increase of the crop yield over 92%, whereas on southern-west a 

decrease is expected (about -128%). Higher changes on crop yield occur on dry zones, 

where a low effect on temperatures and rainfall is also observed, this could be explained by 

the climate sensitivity of these zones. Thus, downscaling allow to focus research on 

valuable specific zones for wheat production. Therefore, we expected an increase on wheat 

yield in important wheat productive zones (Angol and Cunco) associated to microclimates. 
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Our research group is assessing the impact of downscaling on crop simulation and our 

preliminary result suggests that the optimal climate resolution for crop modeling on this 

work domain is 7 km for complex topography zones, and 25 km for flat topography zones 

(Orrego et al., 2014). These results suggest that under A2 climate change, wheat crop will 

be an important crop. Therefore we must enhance different choices of varieties and improve 

public insurance policies to mitigate the expected high variability showed in Figure5.5.    

 Although crop model assesses climate change impact and a high resolution 

projection added valuable information for designing adaptation polices, there are issues 

which should be improved in future works. The first one is plant adaptations to new climate 

condition, which are not considered when running crop models for scenarios 2070 and 

2100. This phenomenon was reported by Zhang et al. (2008) observing a non-stationary 

relationship between temperature and phenology in rice crops. Another issue is soil routines 

on crop modeling when working on volcanic soils, which are not considered in the initial 

CERES-DSSAT database. Volcanic soils show some characteristics, affecting crop 

performance, such as the strong chemical bonds between soil compounds and phosphorous 

limitation for plants. CERES-DSSAT allows manage both water and phosphorous cycles 

(Dzotsi, et al., 2010), but there are few works assessing specific volcanic soil chemistry on 

CERES-DSSAT crop model.      

 

5.5 Conclusion remarks 

 

In this work we project the impact of climate change on wheat yield using a high resolution 

projection. Based on these results, we measure that the effect of using a high resolution grid 

improves crop projections.   

Although we expected an increase on crop yield under climate change conditions, 

we also observed an increase on climate sensitivity showed in the temperature-rainfall hot-

map. In addition, we expected an increase on climate variability as reported by several 

authors. Both issues increase crop risk and variability on crop yield. Yield increase is higher 

when the seeding date is earlier in dry zones and later in wet zones. 

Finally, this methodology helps to understand any crop behavior under climate 

change conditions.  Nowadays, there are several mesoscale databases projecting climate 

change and several models for the main crops. Therefore, our methodology can be extended 

for several agriculture studies related to climate change adaptation such as planning 

infrastructure, selecting crop varieties, and changing seeding dates among others.   
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6. Using a crop simulation model to select the optimal climate pixel size 

 

Abstract 
 

Crop simulations are affected by the climatic condition selected by spatial scale. Several 

crop simulation studies use mesoscale climate database (20-50 km), where topography is 

neglected. We developed a method to select the optimal climate grid cell size (OCGR) 

based on winter wheat (Triticum aestivum L) yield simulations in complex and flat 

topographical zones (CTZ and FTZ respectively) in the Araucanía Region (37°35’ and 

39°37’ S - 73º31´ and 71.31´ W). The OCGR was estimated from the simulated crop yield 

(CERES-DSSAT) using a semivariogram to compute the distance which minimized yield 

difference in respect to its neighbors. Climate variables were obtained from DGF-PRECIS 

(25 km) downscaled to a fine resolution (1 km) through Precipitation Characterization with 

Auto-Searched Orographic and Atmospheric effects (PCASOA) model. They were 

calibrated and validated from 56 in-situ meteorological stations (1961-1991) and field 

experiments (1988-2007). The crop simulation presented no significant differences 

(3.02±0.3–3.04±0.1 Mg ha
-1

) compared with field experiments. The OCGR estimated 

averaged < 7 km for CTZ, whereas it was > 25 km for FTZ. Our approach can be applied to 

any zone and crops.any complex topographical zones   and crops.  

 

6.1. Introduction 
 

Crop yield estimates using mesoscale (20-50 km) data (e.g. CRU; New et al., 1999;  

GPCC; Huffman et al., 1997; DGF-PRECIS, Fuenzalida et al., 2006) have been used to 

study local responses from crop simulation models (Hansen et al., 2006). Database from 

mesoscale models have also been used to feed crop simulation models, evaluate different 

adaptive management practices (Cooley et al., 2005), selection of irrigation protocols, and 

assess the future dynamics of pest and diseases (Jara, 2013), as well as overall climate 

change impacts on agriculture (White et al., 2011; Tan and Shibasaky, 2003).  

To improve the representation of spatial heterogeneity, high resolution databases (< 

1 km) are needed. However, such databases are obtained only when a dense network of 

meteorological stations (Mitchel and Jones, 2005), or high resolution climate grids (~1 km) 

are available (Baron et al., 2005; Mearnset al., 2003; Tsvetsinskaya, 2003). Only few 

studies have addressed the impact of high resolution climate grid cellon the simulated crop 

yield (Angulo et al., 2013; Olesenet al., 2000). Most of them are based on meteorological 

ground records and the spatial density is generated using interpolation techniques, where 

the unknown values need to be computed. This technique was used on the flat zones 

(Angulo et al., 2013).  

Several downscaling techniques have been performed to improve the 

characterization of local crop response reducing the grid resolution (Wilby and Wigley, 
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1997; Guan et al, 2009; Daly, 1994). Downscaling produces important differences of 

climate output, hence, in modeled crop yield response (Baron et al., 2005; Mearns et al, 

2003; Tsvetsinskaya, 2003). Mearns et al. (2003) reported a decrease in 25% in spring 

rains, downscaling from 400 km to 50 km grid the negatively impacted yield and quality of 

wheat crop. Similar results were reported by Baron et al. (2005) in West Africa and 

Tsvetsinskaya (2003) in Southern USA.  The grid cell resolution change has been computed 

by dynamical models (e.g. WRF, MM5). This is not an easy task because of high number of 

computations and large numerical errors (Von Hardenberget al., 2007). To solve this 

problem, topographic downscaling has been implemented (Rupp et al., 2012; Guan et al., 

2009; Daly, 1994) using multi-regression approach. For example, precipitation can be 

distributed from a low to high cell resolution by empirical functions based on topographical 

predictors (Grupta and Waimire, 1993). The most important topographical downscaling 

model is Precipitation Characterisation with Auto-Searched Orographic and Atmospheric 

effects (PCASOA) (Guan et al., 2009) that includes a digital elevation model (DEM), 

where elevation, slope and aspects are regarded to improve spatial representation of 

climatic variables. Since the final scale resolution of topographical downscaling is < 1 km, 

the question regarding the optimum grid cell resolution to represent the spatial crop yield 

variability under different topographical conditions became the center of this study. The 

spatial variability of any continuous variable can be represented using a semivariogram 

(Hengl, 2007). The semivariogram is a plot where the x-axis is the sampling distance from 

the y-axis variable measured from their neighbors. Thus, the y-axis is the variance of y 

denoted by [γ(h)] (Hengl, 2007). The γ(h) rises as the distance increases up to a maximum 

sill, a plateau, which is reached at distance h, called the range(Hengl, 2007). This technique 

can be used to estimate h (km) in the simulated crop yield for the optimal climate grid cell 

resolution (OCGR) influenced by topographical effects. Within the range h, the crop yield 

values are autocorrelated, so any unknown yield value can be interpolated from their 

neighbors at any direction using a selected model. Beyond h, the crop yield variance is 

independent from their neighbors.  

Chile has a mesoscale DGF-PRECIS climatic database at 25 km resolution 

(http://www.dgf.uchile.cl/PRECIS/) for the entire country (Fuelzalida et al 2006). In the 

present study, we developed a methodological tool to predict OCGR, based on a crop yield 

simulation using high resolution PCASOA model database downscaled from DGF-PRECIS 

under different topographical conditions (flat topographical zones and hilly side complex 

topographical zones) in the Araucanía Region of Chile. 

The aims of the present study are: (i) to quantify the impact of topographical 

downscaling (PCASOA, Guan et al., 2009) performed based on DGF-PRECIS database as 

climate input on a crop simulation model of winter wheat (Triticum aestivum L) (CERES-

DSSAT, 2008) at 1 km grid, and (ii)to estimate OCGR by using a semivariogram of the 

simulated crop yield under different topographical zones in Araucanía Region of Chile. 

 

 

 

http://www.dgf.uchile.cl/PRECIS/
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6.2. Methodology 

 

6.2.1 Study area 

The region under study corresponds to the Araucanía Region (37°35’ and 39°37’ S - 73º31´ 

and 71.31´ W) covering 67,500 km
2
. Climate is characterized by a dry season between 

December and March with rainfall between 50 and 70 mm per month, which corresponds to 

a Mediterranean climate. Wet season is from May to September with maximum rainfall of 

220-270 mm per month. The mean annual precipitation is 1,200 mm (Rouanet, 1983). The 

warmest months are from December to February (10°C to 27 °C) and the coldest ones from 

June to August (3ºC to 8 °C) (Rouanet, 1983). The whole region is influenced by ENSO 

cycles (Montecinos and Aceituno, 2002), which produce an important interannual 

variability in precipitation and temperature (La Niña, dry-cold and El Niño, warm-wet 

phase, Grimm et al., 2000). The Araucanía Region presents important soil variability, 

mostly influenced by volcanic activity. According to Soil Survey Staff (2008) in the 

Region, there are Andisols, Alfisols and Ultisols (CIREN-CORFO, 2002). The region 

presents the typical orographical pattern of central Chile. The Costal range (on average 

1,500 m.a.s.l.), called Cordillera de Nahuelbuta in the western side and Cordillera de los 

Andes in the eastern side (on average 3,500 m.a.s.l.). From North to South, there is an 

intermediate depression with agriculture valleys of moderate height (Börgel et al., 1979), 

where most Chilean wheat grain is produced (INE, 2007) (Figure. 6.1).  
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Figure7.1. Araucanía Region, Chile showing 56 meteorological stations used in the present 

study.  

6.2.2 In-situ Database 

We selected 56 meteorological stations located in the Region (Figure6.1) with a complete 

rainfall records from 1961 to 1991 (see below), whereas a few stations (5) presented other 

climate records such as photosynthetically active radiation (PAR) and temperature. Using 

the rule of decade continuous years or 15 years of non-continuous precipitation records 

between 1961 and 1991, The 10 selected stations were used for calibrating the mesoscale 

DGF-PRECIS database. These criteria were defined to include the records within one 

Pacific Decadal Oscillation, which is the main source of climatic variability in the Region 

(Newman et al., 2003). The remaining 46 stations were used to validate the PCASOA 

output. 
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6.2.3 Calibration and validation of DGF-PRECIS database 

The mesoscale database was used and it was obtained from PRECIS model applied to the 

continental Chilean territory between 1961 and 1991 (Fuenzalida et al., 2006). The DGF-

PRECIS database was created in 2006 to simulate the impact of climate change from the 

dynamic downscaling at 25 km grid from HadCM3 model (300 km) (Fuenzalida et al., 

2006). DGF-PRECIS database considered 42 climate variables including PAR, temperature, 

and rainfall. We consider 108 pixels of 25 km from DGF-PRECIS database. The simulated 

rainfall was validated by comparing the mean of each month with in-situ climatology 

records (1960-1991) for each of the ten selected meteorological stations. The DGF-PRECIS 

database underestimated the rainfall in winter and autumn, but overestimated this variable 

in summer and spring. Thus, the database was corrected by computing a monthly ratio 

between the in-situ and the modeled data. The ratio was multiplied by each monthly value 

of DGF-PRECIS. Therefore, a corrected monthly rainfall was used.Since temperature and 

solar radiation could not be validated through meteorological records, these variables were 

used directly from the original database for crop modeling. 

6.2.4 Calibration and validation of PCASOA model 

The corrected DGF-PRECIS was downscaled from 25 km to 1 km using PCASOA model 

for projecting the rainfall (Guan et al., 2009). The PCASOA is a statistical model based on 

multi-regression equation at 1 km of grid resolution (Guan et al., 2009) using topographic 

significant variables (coordinates, elevation, slope and aspect, see equation4.1).  

 

To run the PCASOA model we used: (i) the corrected DGF-PRECIS database as 

ASCII list format with UTM projection coordinates and (ii)a DEM model in ASCII grid 

format and projected in the same geographical area. Detailed knowledge to run PCASOA 

model was also considered as indicated by Guan et al (2009). The DEM was obtained from 

the Global Topography (GTOPO30) project (Harding et al, 1999) for the Araucanía Region. 

It consists of 30 arc-second (about 1 km) altitude maps obtained from radar satellite 

records. The PCASOA was calibrated by fitting a multiple regression model using 

topography characteristics as independent variables with the corrected DGF-PRECIS 

rainfall grids as dependent variable. We used this model to compute the 1-km rainfall. Only 

the significant topographical variables (< 0.05) were considered for the parameterization of 

the equations. The output PCASOA model is the rainfall grid downscaled at 1 km, which is 

affected by significant topographical variables. Finally, the PCASOA model ran over 125 

pixels (25 x 25 km) using the corrected database from DGF-PRECIS given a total of 

67,500 fine resolution grid < 1 km per month.  

 The downscaled rainfall records were validated by comparing the climate average of 

the records in the remaining 46 meteorological stations. The validation showed a positive 

bias through the year, except for summer season. However, this bias is less than 15% in the 

growing season (data not shown). This error should be assessed with respect to the crop 

modeling impact, but it is comparable with other models validated in a similar topography 

zone (Diaz et al., 2010). 

 

The standard spatial deviation of elevation index (SSDE, Biteuw et al., 2009) was 

used to divide the studied area in two large homogeneous topographical zones: (i) the flat 
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topographical zone (FTZ), including intermediate depression valleys and more flat 

agricultural areas and (ii) the complex topography zone (CTZ), namely hilly-side valleys 

and both mountain ranges. The SSDE consists of a 12.5 km radius area with SSDE < 100 

m.a.s.l. for FTZ and > 100 m.a.s.l. for CTZ. The FTZ covered an area of 21,875 km
2
 and 

the CTZ covered an area of 22,500 km
2
 including 21 meteorological stations and 36 

meteorological stations respectively. The remaining 23,125 km
2
 represented the sea. The 

selected FTZ were associated with the stations Maquehue (38°46' S-72°38' W) at the 

Experimental Farm Station of Universidad de La Frontera and Puerto Saavedra (38°47' S-

73°24' W). The CTZ were associated with the stations namely Angol (37°58' S -72°50' W) 

and Cunco (38 55'S -72°2' W) (Fig. 6.1). 

6.2.5 Validation of crop simulation model 

Crop simulation was performed by CERES crop model included in the supported decision 

system (DSSAT, V.4.0). This is the most used model for estimating the climate change 

impact on cropping responses (Meza et al., 2008; Woet al., 2013). The model allows 

changes in several parameters such as CO2 concentration, fertilization, irrigation schedule, 

and the use of different varieties. The CERES model requires a daily weather (maximum 

and minimum temperature, rainfall and PAR radiation), soil database, management 

conditions, and genetic-crop parameters (Jones et al., 2003). The corrected DGF-PRECIS 

was downscaled on monthly terms, but we required climate dataset on daily basis. A 

stochastic weather generator CLIMGEN (Campbell, 1990) was used. To estimate the yield 

variability, we used the rainfall output dataset from PCASOA model and PAR and 

temperatures from corrected DGF-PRECIS database. Thus, we produced 50 synthetic years 

of weather data.   

In the present study, the selected variety was generic DSSAT winter wheat defined 

by seven coefficients: vernalization days (60 days), photoperiod effect (75 days), grain 

filing duration (500 °C degree days base 10 °C), kernel number (30 units kg
-1

), kernel 

average weight under optimum condition (40 mg), stem and spike dry weight at maturity 

(1.5 g), and phyllochron interval (95 °C degree days base 10 °C). These coefficients 

correspond to European winter wheat in DSSAT system. The crop model management 

parameters were defined based on the current values used by the farmers in the Region 

(sowing in May, 250 plants m
-2

 and row spacing 16 cm). Since the present study focused on 

determining the effect of climate grid cell resolution based on the simulated grain yield, we 

fixed soil data obtained from the generic soil default in DSSAT (IB00000002). For the 

simulation, phosphorous and other nutrients in soils were not limited, except for nitrogen, 

which has not been   considered (Angulo et al, 2013; Palusso et al., 2011). 

 The CERES model output was validated by comparing the observed winter wheat 

yield in two season years, 2008 and 2009, from experiments carried out across the Region. 

One experiment was performed at the Experimental Farm Station. In the experiments, 

winter wheat (cv. Kumpa) was seeded under unlimited phosphorous and other nutrients, 

except for nitrogen. Five levels of nitrogen fertilization (urea), including a control without 

nitrogen, were applied. Other experiments (1988-2007) of non-nitrogen fertilizer control 

winter wheat across the region were also regarded (Campillo et al., 2010; Campillo et al., 

2007; Rouanet, 1994).   
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 To assess the impact of the scale change of climate variables affected by the 

topographical conditions on the simulated crop yield, we compared the difference between 

simulated yield using in-situ rainfall records and those obtained from corrected DGF-

PRECIS and PCASOA model. The comparisons were performed using a pair-wise sample 

T-Test computed by using Analysis of Data module contained in Microsoft EXCEL. 

6.2.6 Optimal climate grid cells resolution 

To estimate OCGR,we used a spatial technique, the semivariogram to compute h range 

distance, where the simulated winter wheat yield variability can be predicted.  We 

simulated the yield on each high resolution cell of 1 km nested within a low resolution cell 

of 25 km in a typical year as 1970 i.e. a year close to the historical average and monthly 

distribution of rainfall. Although the semivariogram techniques can be computed 

considering the neighbor in all directions (omnidirectional semivariogram), the directions 

were selected based on orographic dominance in this study. We considered a longitudinal 

transect from West to East and latitudinal transect from North to South in the CTZ and 

FTZ, respectively. Thus, four simulated crop yield semivariograms were computed, two for 

each FTZ and CTZ using ARC-GIS 9.1 software (Redland California, U.S.A.). 

 

6.3. Results 

 

63.1 Crop model validation and spatial resolution impact 

The simulated wheat yield (1961-1991) ranged from 2.8±0.2 Mg ha
-1 

to 3.3±0.2 Mg ha
-1

, 

whereas in the field experiments (1988-2007), it ranged from 2.5±0.5 Mg ha
-1 

to 3.5±0.3 

Mg ha
-1

 and there was no significant difference (Figure6.2). There were no significant 

differences in the crop yield mean between FTZ and CTZ. 

Figure 6.2. Average of observed (1988-2007) winter wheat yield field experiments from 

Vilcún (n=6), Maquehue (n=14) and Angol (n= 15) (see Fig 7.1) representing the flat 

topography zones (FTZ) and complex topography zones (CTZ) in Region of Araucanía  as 

compared with the simulated (DSSAT) winter wheat yield average (1961-1991) in  the same 

locations. Bars represent the standard error of the mean. 
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There were significant differences between simulated crop yields using PCASOA or DGF-

PRECIS database relative to in-situ record simulations (error) (Figure6.3). The yield 

simulation from PCASOA database ranged from -27% to 42 % of the ground simulation, 

whereas for DGF-PRECIS database it ranged from -72% to 153 %, doubling PCASOA 

yield errors. 

Figure6.3.Boxplot error of simulated (DSSAT) winter wheat yield of typical year 1970 

(mean and monthly precipitation close to the annual values) by PCASOA high resolution 

(< 1 km) climate output database or DGF-PRECIS low resolution (25 km) climate ouput 

database relative to in-situ climate records simulation from 46 meteorological stations 

(1961 and 1991) in Araucanía Region, Chile. Red line shows the mean and black line 

shows the median. 

 

The simulated yield in the FTZ and CTZ using PCASOA, DGF-PRECIS and the records 

data from the stations are presented in Figure6.4. The absolute amount of winter wheat 

yield was significantly different only in CTZ (P < 0.05) (Fig. 4b), but PCASOA showed 

lesser error than DGF-PRECIS improving the crop simulation in about a 50 % (RSME 

0.257 Mg ha
-1

 for PCASOA and 0.719 Mg ha
-1

 for DGF-PRECIS) in both zones. In FTZ, 

PCASOA simulation showed the lowest variability, whereas DGF-PRECIS showed the 

highest one. However, the simulated mean yield values were similar among all databases 

(for PCASOA it was 2.24 Mg ha
-1

, for DGF-PRECIS it was 2.25 Mg ha
-1

, and for in-situ 

data it was 2.26 Mg ha
-1

). In contrast, the simulated yield using in-situ and PCASOA 
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database in CTZ was 1.97 Mg ha
-1 

and 2.09 Mg ha
-1

, respectively, whereas the variability 

for DGF-PRECIS in CTZ was the highest value (2.20 Mg ha
-1

). Comparing the error of 

PCASOA and DGF-PRECIS database, PCASOA showed lesser error in both zones (-27 to 

46 % in FTZ and -8 to 40 % in CTZ compared with DFF-PRECIS (-72 to 75 % and -51 to 

153 %) (Figures6.4c and 6.4d). 

Figure6.4. Boxplot of (a-b) absolute simulated (DSSAT) winter wheat yield by in-situ 

climate records from 46 meteorological stations (1961 and 1991) in Araucanía Region and 

(c-d) relative error of simulated crop yield of typical year 1970 (mean and monthly 

distribution of mean annual precipitation) by PCASOA high resolution (< 1 km) output 

database and DGF-PRECIS low resolution (25 km) climate database relative to in-situ 

climate records. Red lines show the mean and black lines show the median. 

 

6.3.2 Optimal climate grid cell resolution 

The semivariogram of the crop yield variability to estimate the OCGR is shown in 

Figures7.5 and 7.6. Both, FTZ and CTZ showed a spatial autocorelation, hence spatial 
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variability could be represented by the semivariograms. In fact, all zones show Moran's 

indexes close to one which indicates that the database was autorelated. There are no 

statistical evidences (P < 0.01) that the values were non-autocorelated. However, some 

semivariograms reached a stationary (steady-state) variability showing the maximum 

distance h where the non-sampled neighbors can be predicted. If the non-steady state 

variability is not reached, we can predict that 25 km of spatial variability cell size can 

represent the mean yield of the OCGR.   

There was no range h in the FTZ (Maquehue and P. Saavedra), because the 

semivariogram either in North-South or East-West directions did not reach a stationary 

yield within cell, suggesting that the distance, in which OCGR was calculated, is larger 

than 25 km mesoscale cell (Fig 6.5). In contrast, OCGR in the CTZ in Cunco was estimated 

from 8 to 25 km, depending on directions North-South or West-East, respectively 

(Figure6.5). In Angol, h was 15 km from North to South and 17 km from West to East 

(Figure6.6). The last two cases are explained by topography.  In Cunco, there is a valley 

crossing the cell in West-East direction dividing into two hillsides and one valley. This fact 

implies similar yield on both hillsides, and a different yield in the valley.  In Angol, the 

Nahuelbuta Mountains present an elevation just on the northern zone, which increases 

rainfall with respect to the southern zones. 

Figure6.5.  Spatial variability of simulated (DSSAT) winter wheat yield estimated 

representing the flat topography zones (FTZ) in the Araucanía Region. Left semivariogram 

is North-South direction. Right semivariograms are East-West direction. Moran probability 

index (0 = non autocorrelation and 1 = full autocorrelation). Vertical line shows range h. 
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Figure 6.6. Yield directional semivariograms inside the selected low resolution pixels on 

complex topography areas. Left semivariograms are in North-South direction, and right 

semivariograms are in East-West direction. Moreover, we show Moran Index and 

itsprobability equals 0 (non autocorelated). Vertical line shows range h. 

 

6.4. Discussion 

 

In the present study we assumed that downscaling climate low resolution rainfall database 

for crop model is useful for predicting an OCGR. We hypothesized that the spatial 

resolution of the simulated crop yield can be computed, which, in turn, represents the 

optimal grid cell resolution < 1 km database under flat and complex-topography scenarios. 

For this purpose, we used a semivariogram technique.  

As far as we know, there are a few papers which have estimated an OCGR using up-

scaling interpolation from the meteorological record dataset (Wong and Asseng, 2006; 

Olesen et al., 2000) and there are no papers using spatial resolution and topographical 

features. Therefore, works based on up-scaling are the unique references for analyzing our 

results. The OCGR estimation was possible because the high resolution climate grid 

obtained by PCASOA model improved significantly the simulated crop yield introducing 

the topographical effects. This contrasts with the results obtained by Olesen et al. (2000), 

who reported the spatial crop variability in Denmark at 10 km grid. This effect could not be 

explained by the climate grid cell resolution, since there was no correlation between climate 

and yield variability. Angulo et al. (2013) studied the spatial crop yield variability in 

Norway and they reported yield differences of 4 % when the scale resolution changed from 

in-situ data to a 20 km grid. They used several models (including DSSAT) for simulating 

crop yield and they observed that the resolution scale explained the variability less than the 

crop model, because the study was performed in the flat agricultural areas. In contrast, the 

present results indicate a clear relationship between the topographic variables and the 

impact of climate resolution on crop yield simulation (Fig 6.4). 
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Although up-scaling is the unique reference for analyzing our results, both 

approaches have different sources of errors, therefore it is expected that both can present 

different yield responses. Up-scaling depends on the interpolation method and the climate 

record density. The spatial resolution technique proposed here depends on climate modeling 

quality and agriculture feasibility, limited mainly by topographical constraints. Thus, we 

think that our technique is more suitable than up-scaling from synthetic scenarios based on 

climate grids (e.g. for climate change and climate cycles) or where interpolation methods 

are unreliable due to lack of data, and/or low spatial autocorrelation. 

We observed that there was a poor correlation (R
2
 = 0.30, P < 0.01) between high 

rainfall in-situ record data (> 2000 mm) and crop yield, whereas the opposite was true (R
2
 = 

0.71, P < 0.01) at low rainfall (< 2000 mm) (Wong and Asseng, 2006). This could be 

explained because high rainfall improves the crop growing conditions, reducing the effect 

of climate variability. In fact, when rainfall exceeds 2000 mm, soil moisture is not a 

limiting factor for crop growth and precipitation is not related to   yield variability (Wong 

and Aseng, 2006). This result supported the hypothesis of the present study that topography 

influences OCGR estimation, particularly in CTZ. Therefore, from an operative point of 

view, OCGR can be well estimated in a dry year to increase the sensitivity of the crop 

simulation response to climate input.  

 Finally, downscaling for the study type conducted here should be focused on CTZ, 

including hilly-side mountains areas where small farmers are located. Climate in this area 

can be modeled using improved input grids such as OCGR calculated in this research. In 

addition, our approach can be used for examining the microclimates at high resolution 

climate dataset. 

 

6.5. Conclusion 
 

In this study we provide an approach for selecting the optimal scale linking climate grids 

with crop modeling to assess the impact of high resolution downscaling technique on crop 

simulations of winter wheat in Araucania Region. We showed that downscaling improves 

the crop model performance in about 50 %. These effects depend on the topographical 

conditions. In flat topographical zones there are no significant differences in the crop yield 

simulated with high resolution (< 1 km) or mesoscale resolution (< 25 km) database, 

whereas in complex topographical (hilly side and mountains) zones these differences were 

highly significant. In the Araucania Region, the optimal climate grid cell resolution was 25 

km in the flat zones, whereas, it was 4 km in complex zones. The optimal climate grid cell 

resolution estimation was also affected by total rainfall and topography variables (altitude, 

aspect and slope) providing a clear assessment to a simple estimation of climate grid 

resolution for optimal crop yield. The broad implication of our findings are: we do not 

require downscaling from mesoscale models database in flat zones , whereas downscaling 

to simulate the optimal crop yield is required in hilly-side and complex topography zones. 
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7. General discussion 

 

This thesis was focused on projecting the main climate patterns at local scale under climate 

change scenarios of A2 and B2 from IPCC (2001; 2007) and assessing its impact on crop 

systems. This analysis considered climate model validation and scale improvement for 

projecting the impact at high resolution grid (1 km). We use this grid to study the impact of 

climate change scenarios on wheat crop yield on Araucania Region. In this process, we test 

the topographical downscaling as methodological steps to improve the climate projections 

from mesoescale climate model outputs. We also define an optimal climate scale for crop 

modeling.  Our methodology enhances the rainfall and crop projection helping to design 

mitigation strategies, and it can be extrapolated for any zone and crop. Thus, the novelty of 

this tesis were: a) to valídate the DGF-PRECIS dataset by comparing with in-situ climate 

records, identifying its main uncertainties, b) to develop a high resolution projected rainfall 

dataset (1 km) for the Araucanía region, c) to develop a high resolution crop yield 

projection (1 km) for the Araucanía región, d) to assess the impact of the downscaling of 

climate models at high resolution in the crop modeling, and d) to propose a method for 

identify the optimal climate grid size.  

This thesis is compiled in seven chapters. In Chapter 1 a general introduction is 

presented. In Chapter 2, a compilation of the current theoretical framework of the state of 

the art on the impact of climate change on crop system is discussed. We hypothesize that 

the theoretical downscaling techniques must be used for correcting differences of scales 

between climate models and high resolution crop models (< 1 km grid). This hypothesis 

was tested in Chapter 6, finding dependence between climate grid resolution and 

topography. In the same Chapter we computed an optimal climate grid cell size for crop 

modeling, which was has not been proposed in the literature (Orrego et al., 2014). 

In Chapter 3, we validated the national dabase projection called DGF-PRECIS for 

local area (Araucanía Region) using a general validation for the whole Chilean territory to 

understand the local model biases. DGF-PRECIS database had a good performance to 

reproduce the rainfall pattern from central to southern Chilean Regions (56-30º S) under 

neutral ENSO influence. However, in the northern regions (17°-30°S), DGF-PRECIS 

database showed large errors (>30%). We also found that climate pattern under El Niño and 

La Niña synoptic condition was not well represented. Althouhg this does not affect the 

climate projection reliability, ENSO effects could affect the representation of future climate 

variability. For solving this problem, one strategy should be the use of ENSO phase 

scenarios.   

Although general climate pattern of DGF-PRECIS database are fitted with the 

observed record in Araucanía region, it projection indicates a drier summer and rainier 

winter. This was corrected using an empirical coefficient generating a new corrected 

rainfall dataset. This correction was a critical step to generate a high resolution dataset 

using a topographic downscaling (Chapter 4), which it was particularly sensitive to the 

quality of climate grid. 
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In Chapter 4 we downscaled the corrected DGF-PRECIS in Araucanía Region to 

obtain high resolution grid (1 km) using a topographical model PCASOA.We added the 

effect of topography for these simulations, obtaining improvements with respect to both, 

the original DGF-PRECIS and corrected database.  Most important corrections occur 

precisely during the crop-growing season (spring and summer) impacting the crop 

modeling (Chapters 5 and 6). Additionally we presented and discussed that high resolution 

dataset performed better than the climate pattern obtained with mesoescale resolution, such 

as the orographic rainfall on Nahuelbuta Costal Condillera and the “absolute” dry season 

located in the North-West of the Araucanía Region. In fact, we project an increase of the 

Föen effect on Nahuelbuta range, and a later in one month in the dry season under climate 

change condition. Also, we prove that topographical downscaling is a suitable method in 

places with a lack of climate records. It is important to say that high resolution do not 

changes the general trend, but marked the differences. 

In Chapter 5, we showed the crop projection made by high resolution climate 

projection linked with CERES crop model (DSSAT). We obtained positive responses in the 

crop simulation models by assessing the impact of climate change in Araucanía Region, 

which can be used for policy makers by simulating crop yield and phenological stages as 

criteria. This response is explained by higher CO2 concentration and also by climate 

condition. The effect of climate condition on the yield is explained by nitrogen lixiviation 

which would decrease under climate change condition (Chapter 5). Based on our result, it is 

possible to improve the current policies. Crop modeling assumes that crop genetic 

coefficient will be constant under climate change condition as well, which is criticized by 

some authors. Moreover, farmer adaptation is another mitigating effect for projecting the 

crop yield under climate change conditions. Both ideas are important challenges for 

improving the crop projection, and they must be considered when our results are used. 

Based on all the works mentioned above, in Chapter 6 we performed a spatial 

analysis for measuring the effect of downscaling on the crop simulation model for an 

optimal climate grid cell size using the yield response of a crop model. Scale downscaling 

significantly affected the crop response, but only on complex topography zones. The  

method proposed here for defining the optimal grid size suggests that mesoscale grids are 

suitable for representing the crop yield spatial variability on the central valley (flat zones), 

but fine grids are required for zones located near the Nahuebulta mountain (e.g. Angol) and 

Andes Mountain (e.g. Cunco). Although the main crop productivity zones are located in flat 

zones, complex topography zones are more sensitivities to climate change, where the small 

subsistence farmers are located as well. 

                        

 

7.2. Concluding remarks 

 

 DGF-PRECIS database had a good performance to reproduce the rainfall pattern 

from central to southern Regions (56-30º S) only under neutral ENSO influence. In 

fact, climate pattern under El Niño and La Niña rainfall are overestimated. Also, in 

the northern regions (17°-30°S), DGF-PRECIS database showed large errors 
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(>30%).This suggest that the interannual dynamic of Pacific Anticyclone is not 

represented by climate models used in DGF-PRECIS database. The corrected 

projections showed a decrease in annual precipitation < 458±4 mm per year (30%) 

and 235±9 mm per year (15%) under A2 and B2 scenarios.  

 Topographic downscaling is a suitable method in places where the lack of climate 

records is present. This downscaling improved the climate projection, reducing the 

error in about 20%. Downscaled database showed less error in spring and summer, 

just the growing crop season. Also, high resolution dataset represent climate pattern 

which cannot observe at mesoescale resolution. The main effect is the orographic 

rainfall on Nahuelbuta Costal Condillera and the “absolute” dry season located in 

the North-West of the region. 

 We expected an increase (about 52%) on the crop yield under climate change 

conditions. This increase is explained for both: higher CO2 concentration, and better 

climate condition. We propose earlier seeding date in dry zones and later seeding 

date in wet zones, and genetic adaptation strategies for winter wheat. 

 Optimal climate grid cell size was estimated including the effect of topography in 

Araucanía Region for winter wheat. It was estimated successfully using variogram 

technique. We obtained a significant effect of downscaling only on complex 

topography zones. We computed an optimal climate grid cell < 7 km for complex 

topography zones, whereas it was > 25 km for flat zones. These values are valid for 

winter wheat in the Araucanía region, but our method based on semivariograms can 

be applied to any zone and crops if the rainfall data density is enough to produce 

such a high resolution climate grid.  

7.3. Future prospects 

 

 For solving the climate uncertainties from AOGCM, IPCC has been developing a 

new projection during the last years considered in the next AR5 report. These new 

projections include new scenarios, ENSO condition and improvements on linking 

sub-models (mainly land cover). The uses of these new climate projections for 

developing high resolution crop projection needs to be locally tested in the near 

future.  

 Topographic downscaling is a suitable method for improve the climate projection. 

However, computing the maximum resolution to generate good crop response is not 

an easy task. Theoretically, the maximum resolution depends on elevation, and 

nowadays high resolution digital elevation model are available (< 100 m). Other 

factors related to land use must be considered (e.g. water evaporation of crop on 

close areas, urban heat island) that could affect the climate patterns. To develop 

downscaling techniques, which included both, topographic and land use, is an 

interesting challenge for extend our work to other areas and crops where higher 

resolution are required. 

 A promising strategy for climate change adaptation is to project scenarios. The 

techniques developed in this thesis could be used to improve these projections. In 

Chile, and in particularly in Araucanía Region, two phenomena show important 
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effects on climate condition: ENSO and Antarctic Oscillation. The ENSO is widely 

investigated, but there are no definitive conclusions for the impact on climate 

change. The International Research Institute for Climate and Society (IRI) has 

developed seasonal forecast methods based on ocean surface temperature. Antarctic 

Oscillation is recently investigated because this phenomenon produces important 

effects on high latitude rainfall. Although these aspects were not included in this 

thesis, we had improved the season projection for Araucanía Region by making an 

experimental model, which corrects IRI projection using an Antarctic Oscillation 

Index. This is an ongoing research where the downscaling techniques applied in this 

thesis are used to improve these projections for genetic crop strategy on this new 

climate variability.  

 Other challenge is the cropping adaptation strategy to climate change condition. 

Chile could be an excellent natural laboratory due to its climate variability and 

geography isolation.   On the other hand, an interesting topic is to assess the effect 

of soil properties as buffer for climate change impact which was not done here. This 

has not been investigated and could be an interesting prospect to project real crop 

response under the new climate change condition. On the other hand, the natural 

crop adaptations are new issues for another research for improving crop projection. 

 Our results could be extrapolated to other crops and places located mainly on 

complex topography zones. If we focus on Chilean crops, the first challenge is to 

extend this work for others valuables and sensitive agriculture products such as 

potatoes, fruits and grape-wine. Moreover, our research can also be extrapolated to 

other research areas, such as forestry and wild life, hydrology, and human health. 

Since its sensitivity to climate condition and valuable biodiversity, relicts forest (e.g. 

Fray Jorge) could be one of the most important issues to assess its behavior based 

on high resolution climate projection. However, it is important to assess the optimal 

grid size estimation. It cans performe by nested simulation, using systematically 

higher grid resolution to reach a steady state of the modeled crop yield.  
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